

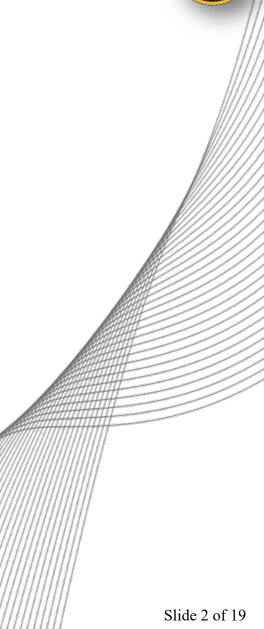
GENERAL DYNAMICS Electric Boat

S2926: Improved Lead Bay Packing

NSRP All Panel Meeting 2025

George Hinerman Advanced Technology International

Connor McNulty-Ule


General Dynamic Electric Boat

February, 2025

Prepared under ONR Contract (N00014-19-D-7001) as part of the Navy ManTech Program DCN 2025-1-22-526; Approval Date: 02/18/2025

Agenda

- 1. Project Team
- 2. Platform/Issue Description
- 3. Objective
- 4. Technical Goals
- 5. Benefits/Pay Off
- 6. Project Schedule
- 7. Technical Approach
- 8. Technical Content and Status
- 9. Transition/Implementation Plan
- 10. Next Steps
- 11. Q & A

Project Organizational Structure

Project Overview/Objectives

- Issue Description:
 - The current process for lead bay packing is time consuming and physically demanding. Lead is used as a fixed ballast to establish design equilibrium and stability, zero trim and zero list.
 - Painted lead bricks ranging in weight from 0.5 to 56 lbs are delivered to the shop floor to transported using an overhead crane to the hull section. The bricks are then manually transported to the appropriate bin within the hull section.
- Project Objective(s):
 - The objective of this effort is to develop a new process for delivering the lead bricks to the appropriate location on the hull section.
 - Other objectives are to reduce the exposure to the lead and the repetitive physical strain on the employee

Lead Ballast Installation (By the numbers)

Number of Handoffs	Approximate Weight of Lead Packed (Platform 1)	
77,000 times	>100,000 _{lbs}	
Lead Brick Weight	Approximate Weight of Lead Packed (Platform 2)	
56_{pounds}	>500,000 _{lbs}	
Average # of times handled (per brick)	# of pieces installed	
6-7 _{times}	>10,000	

Project Goals

Goal 1: Transportation Time

Goal 2: Time loading into hull

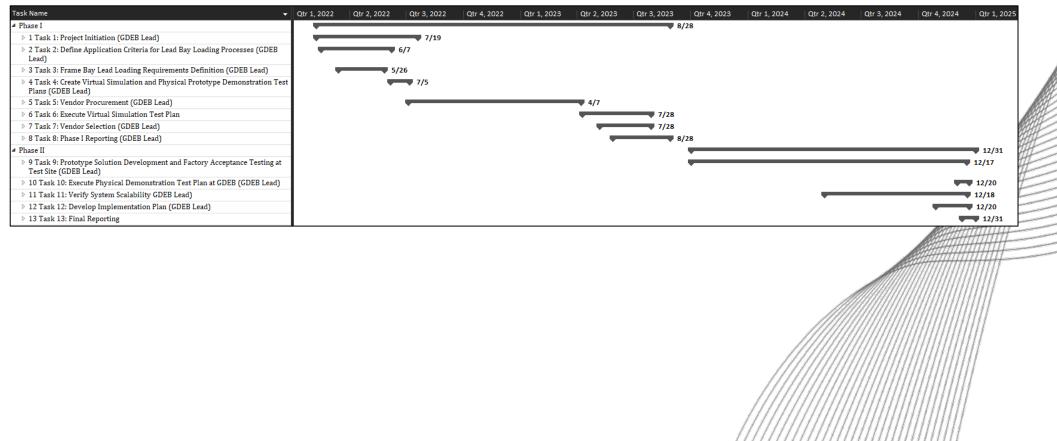
89%

reduction in lifting time

Expected ROI: 5.57

DISTRIBUTION STATEMENT A: Approved for public release: distribution is unlimited.

fewer

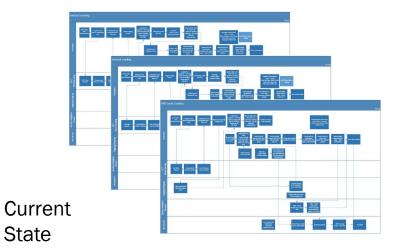

handoffs

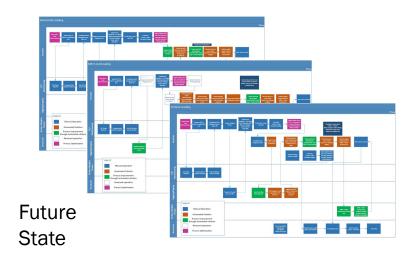
improved

ergonomics

Project Schedule

- Recently Completed
 - ONR Period of Performance: 11 February 2022 through 31 December 2024

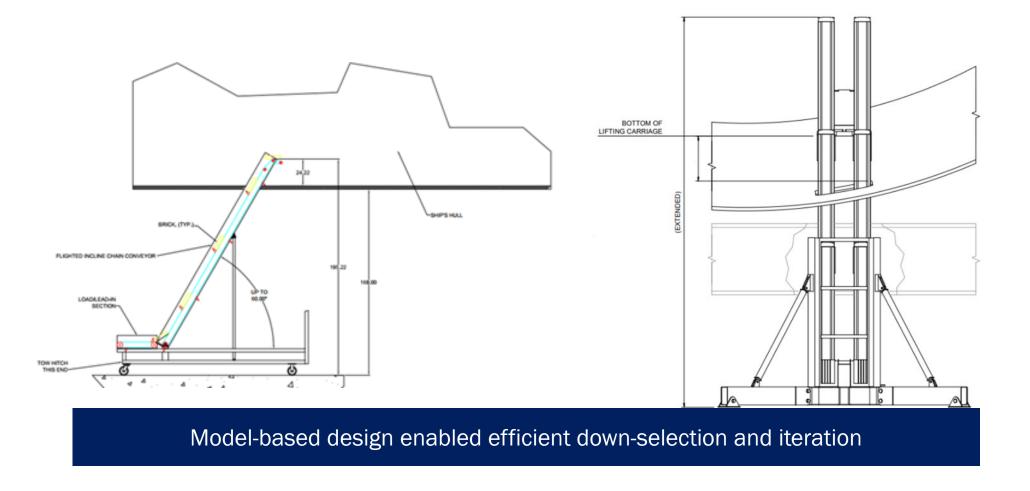

Define Current/Future State


Current stern loading process

- 1. Lead pallets next to module after delivery
- 2. Lead stand assembled next to module for loading. Forklift lifts lead pallet.
- 3. Pallet jack to transportation from lead to stand to access opening
- 4. Lift table to lift lead parts into module. (12 ft, 150 lb max load)
- 5. Lead packed into a bin. Shimmed and tight, blue marks indicate the parts have been counted.
- 6. Lead covers for installation.
- 7. Lead cover welded in place.

Selected areas of improvement include:

- 1. Work Order Memorandum
- 2. Installing Rubber Liners
- 3. Submit Weight Count
- 4. Stern loading lead transfer from pallet to access opening
- 5. Vertical and Horizontal loading trades pack bins



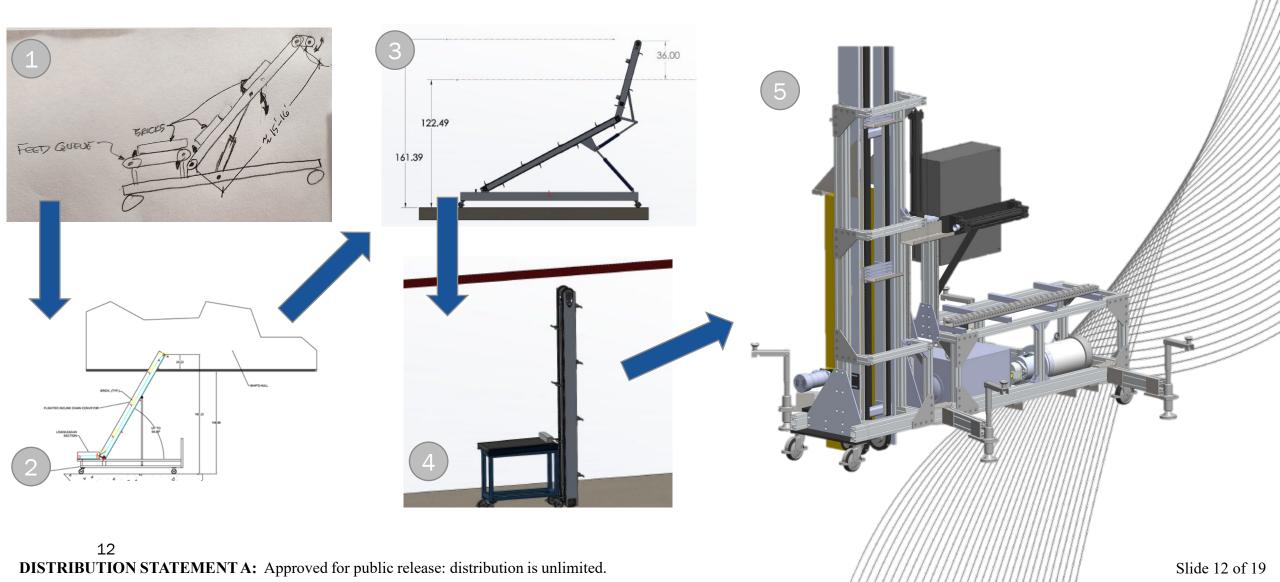
Market Survey

Execute Virtual Simulation Test Plan

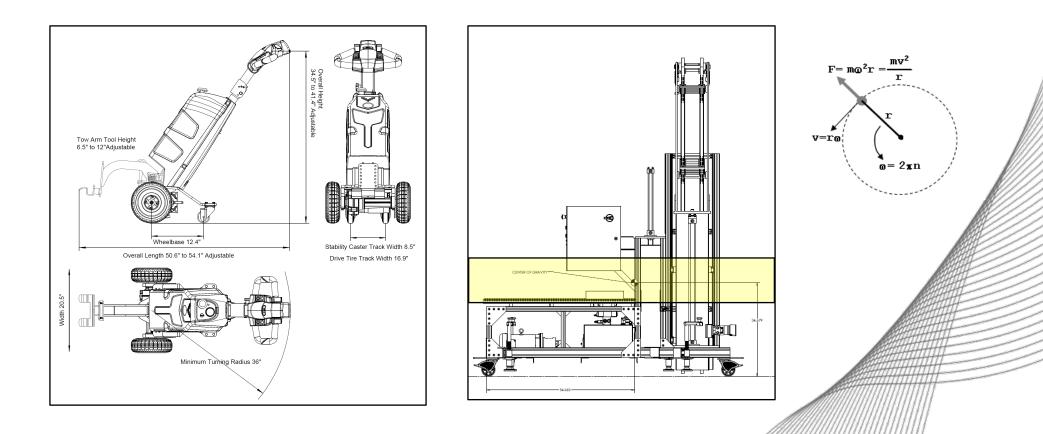
Vendor Down Selection

13 criteria were approved & scored

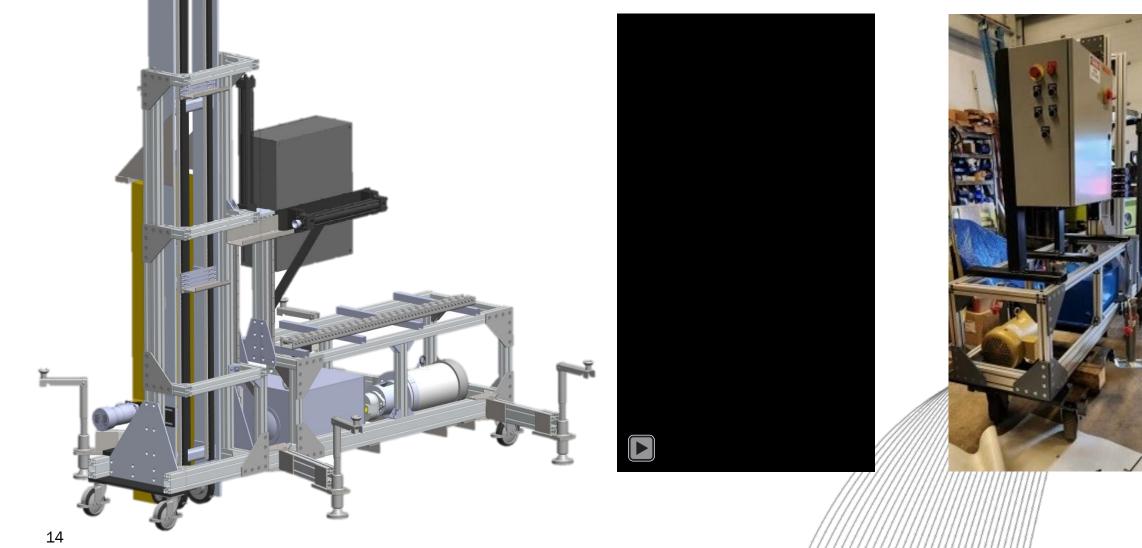
- Key Benefits:
 - Cycle time reductions
 - Flexible design
 - Lower costs
 - Substantial shorter lead times


Recommendation: The Cooke Corporation

Decision	n Matrix				
Criteria	Weighting	Baseline			
		Manual		Engineered Rigging	Cooke Corp
		Score	Total	Total	Total
Reduction in Cycle Time	2.0	1.0	2.0	18.7	20.0
Reduction in Transportation	1.0	1.0	1.0	5.7	7.7
Feasibility of Success	3.0	10.0	30.0	20.0	24.0
Applicability to Other Loadings	1.0	10.0	10.0	6.0	9.0
Implementation Costs (1 - Expensive, 10 - Cheap)	1.5	10.0	15.0	2.0	11.5
Access Limitations (1 - Highly confined space, 10 - Low limitations)	1.0	10.0	10.0	3.7	5.7
Lead Quantity	1.0	1.0	1.0	9.7	6.7
Footprint - Amount of Space Occupied	1.0	9.0	9.0	9.7	8.0
Requires Process Change (1 - Drastic Change, 10 - No Change)	1.0	10.0	10.0	4.0	6.0
Ease of Operation	1.0	2.0	2.0	7.3	8.0
Safety Factors Considered	1.5	1.0	1.5	10.5	10.5
Off-the-shelf vs Customized Parts (10 - Off-the-shelf, 1 - Custom)	1	10.0	10.0	7.7	8.3
Lead Time	1.0	10.0	10.0	1.0	7.3
Total (Larger score is better)			111.5	105.8	132.7

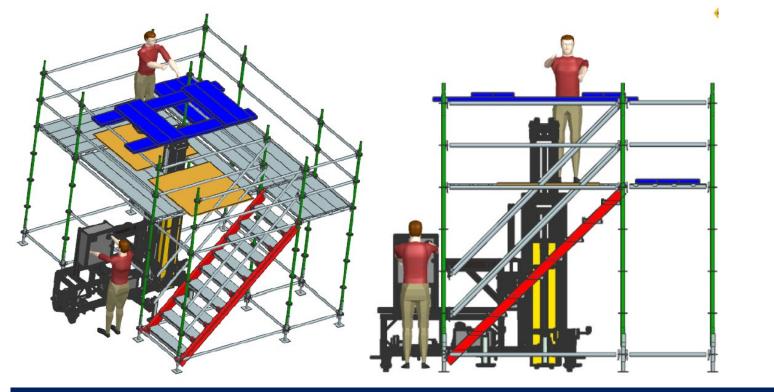


Iterative Design

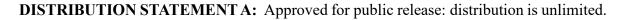


Risk Reduction - Prototype Safety Calculations

Dynamic calculations were reviewed to ensure safe operations in the shipyard


Final Design

Physical Demonstration Test


A physical mockup of the representative loading area was built to test and provide a training location

Transition/Implementation

- Technology Transition Plan Status: Approved, (under annual review control)
- Transition Event: Successful completion of trial runs and formal acceptance of new process and training by safety and union representatives
- Stakeholder Implementation Commitment: None at this time.
 - Target: General Dynamics Electric Boat QP
- Opportunities to Leverage:
 - Handling of heavy equipment similar in size/weight
 - Transportation of other equipment and material for install

Lessons Learned

- Human Subject Testing for exoskeletons
 - Navy Submarine Medical Research Laboratory (NSMRL) Internal Review Board (IRB) completed
- Iterative Design
 - Utilizing subject matter experts in design helped prevent challenges early
 - SMEs identified tight tolerances of hole opening would prevent challenges in using more complex, multi-conveyor solution
- Importance of Factory Acceptance Testing to mirror real-world application
 - Engaging end-users at Factory Acceptance Test at EBQP provided instant buyin / training
 - Utilizing Lead Bricks during Factory Acceptance Test to verify systems lifting capability

Questions?

