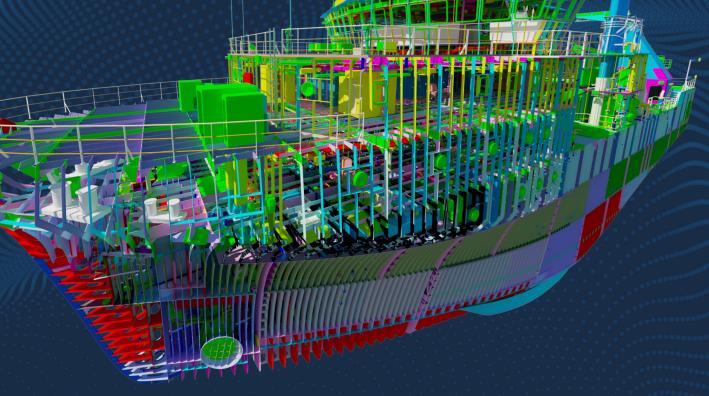


Genoa Design Industry Perspective.

NSRP Business Technologies and Ship Design & Materials Technologies Joint Panel

August 21, 2024


CHRIS LAUGHLIN Director of Business Development & U.S. Operations

PAGE 1

GENOA DESIGN INTERNATIONAL

Digital Ship Experts.

- 29 Years of Experience
- **130** Projects to Date
- 239 Team Members
- 4 Locations Across
 North America

٠

Why is the Demand for Ships Outpacing Industry Supply?

SKILLED LABOR SHORTAGE

Many shipyards are experiencing a significant workforce gap due to retiring personnel and insufficient numbers of young workers entering the industry, Shipyards are also in need of engineers, designers, Subject Matter Experts, etc., to mature functional and detailed engineering

INCREASING OUTPUT QUICKLY AND EFFICIENTLY IS THE GREATEST CHALLENGE FACING SHIPBUILDING

- The US Navy, increased its shipbuilding budget by **12.5% per year** from 2020-2024.
- US shipbuilding output has decreased by **more than 85%** since the 1950s.
- American shipyards capable of building large vessels has fallen by **more than 80%**.

SUPPLY CHAIN VULNERABILITIES

- Shipbuilders often face disruptions in critical supply chains, exacerbated by global events and geopolitical factors.
- Limited access to essential materials and components can cause delays in production and project timelines, affecting overall competitiveness and profitability.

GENOA'S PERSPECTIVE

Solving the Problem, HOW?

GENOA'S TALENT SOLUTIONS

- Sourcing and/or developing talent with the right skills to meet industry demands.
- Focuses on addressing skill shortages by developing and sourcing highly skilled professionals

GENOA'S CORE SERVICES

To meet ever-tightening constraints, we believe that fostering intelligent management, cultivating high caliber design talent and evolving innovative approaches are the keys to offering premium quality products and services with cost and schedule certainty.

GENOA'S FUTURE PRODUCT OFFERINGS

Identifying new risks and gaps early and developing new products and services to mitigate.

SOLVING THE PROBLEM

Genoa's Talent Solutions

THE TALENT DELEMMA

Problem Statement

The supply of talent has not kept up with demand.

The shipbuilding industry is experiencing a growth cycle in the USA and Canada. That growth is resulting in major challenges with delivering large complex assets on time, including finding the right mix of talented resources to execute projects.

THE TALENT DILEMMA

The Talent Gap

WORKBOAT

WORKER SHORTAGES CAUSE COAST GUARD TO ADJUST CONTRACT DELIVERY DATES

By Guest Author: Stephen Blakely — May 20, 2024

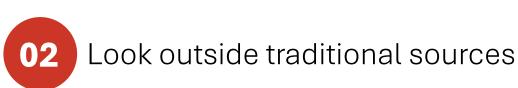
After years of working to successfully obtain congressional funding to rebuild several of its aging fleets, the Coast Guard is now facing additional delays because of a lack of shipyard workers.

Coast Guard officials have said that the worker shortage at shipyards along the Gulf Coast is delaying three of its programs already funded by Congress to modernize its fleets:

Bloomberg

WORKER SHORTAGES CAUSE COAST GUARD TO ADJUST CONTRACT DELIVERY DATES

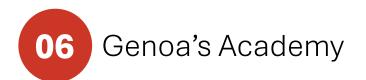
By Guest Author: Tony Capaccio — April 12, 2024


The shipyard producing the US Navy's new frigate has been hobbled by a failure to "achieve engineering and skilled workforce levels" for the medium-sized vessel, according to a service document on the project that's now forecast to run as much as three years late.

SOLVING THE TALENT PROBLEM

Mitigating The Risk

Develop New Talent

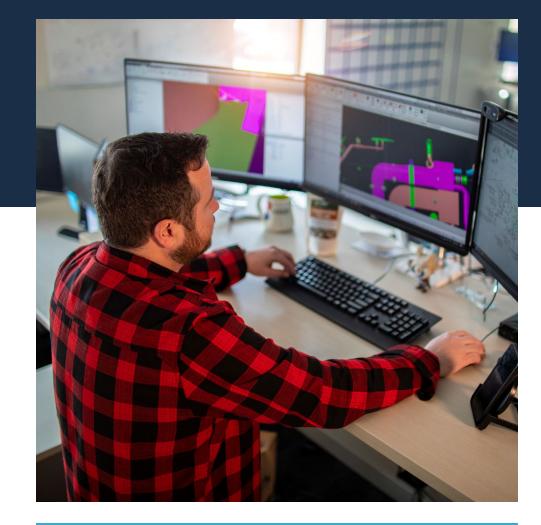


03 Diversify Talent

05

Determine the real demand

PAGE 8



SOLVING THE PROBLEM

Genoa's Core Service

It All Starts With

WE OFFER A FULL SET OF DESIGN SERVICES, CUSTOMIZED TO SUIT YOUR NEEDS:

Design & Consulting

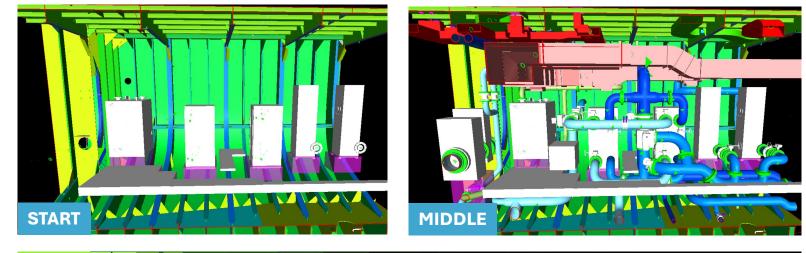
- Transitional Design
- Detailed Design
- Production Packages

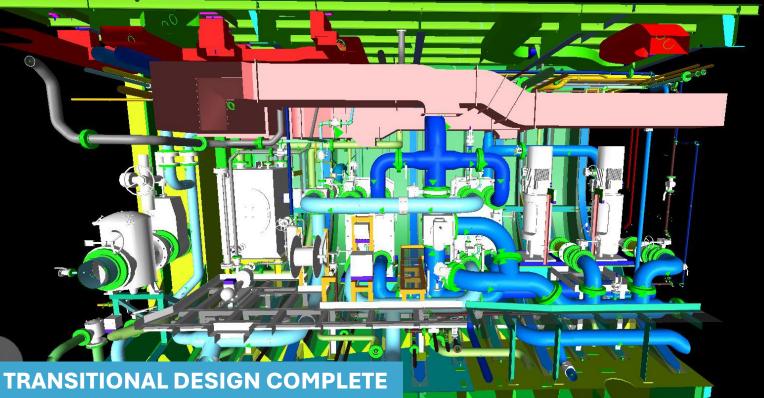
WE ACHIEVE EXCEPTIONAL RESULTS WITH A FOCUS ON:

- Planning
- Configuration & Information Supply Chain Management
- Quality Services

Transitional Design

"Bringing Functional Design to life"

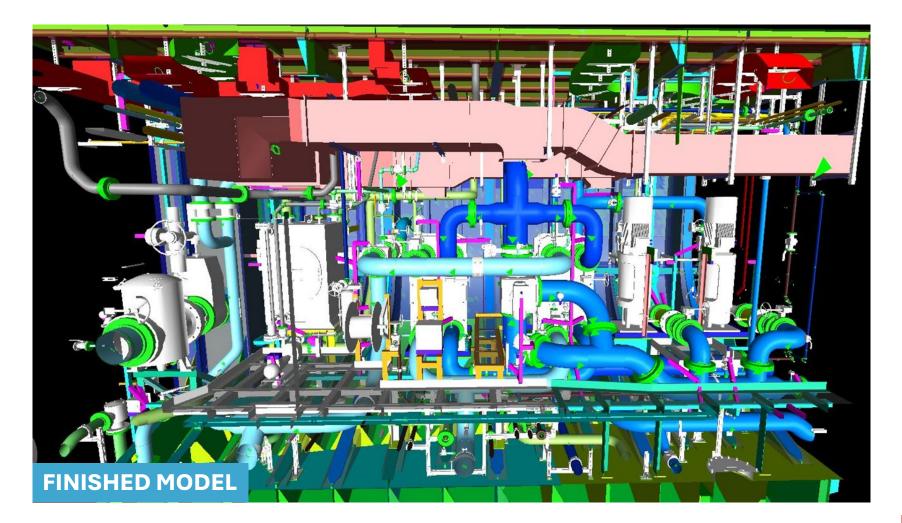

PURPOSE: De-risk the Functional Design without undue detail


MODEL DEVELOPMENT

Task sequencing chosen to limit Value at Risk

1st resolves broad & interdependent problems

2nd Moves on to items that are increasingly localized and independent

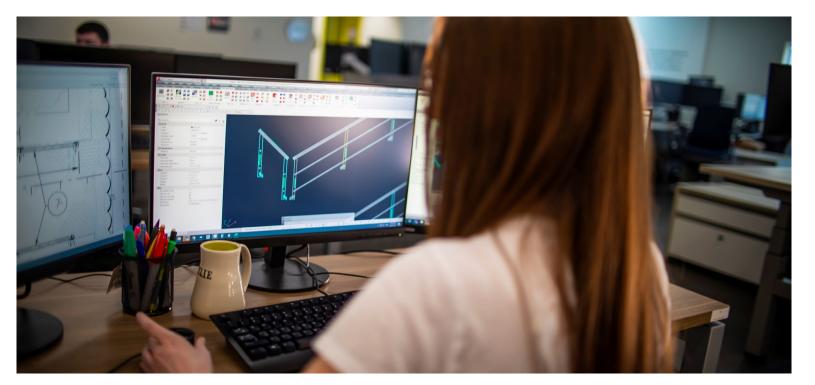

Detail Design

"Completing the picture"

PURPOSE: Add the myriad of final details to complete the model

MODEL COMPLETED BY INCLUDING:

- Piping instruments and minor components
- Remaining minor equipment
- Supports
- Outfit detailing
- Local cable runs
- Yard specific standards

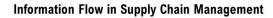

Production Packages

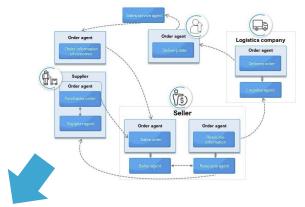
"Where the rubber meets the road"

PURPOSE: Translate the model into a constructable form

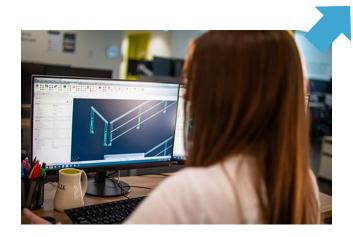
TAILORED DRAWINGS TO MEET:

- Build Strategy
- Construction Planning
- Module Breakdowns
- Bending, cutting and forming equipment
- Yards Standards and practices
- Stock management system


Planning

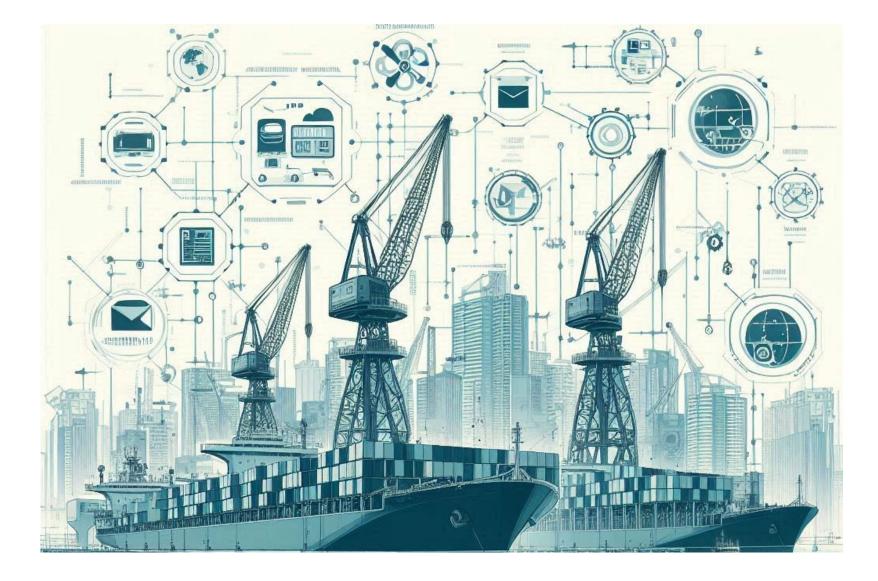

"Prepare and Follow Through"

CRITICAL COMPONENTS:


- High quality estimates
- Information supply chain management
- Resource management
- Risk Management

cti	vities												
Proj	jects Activities												
VL	Layout Standard Budg	et Layout		Filter: All A	ctivities								
Activ	rity D	C Activity Name	Calendar	Original Duration	Start	Finish	Activity % Complete	Dec 31	Jan 07 S M T W T Fri S	Jan 14	Jan 21	Jan 28	Feb SMTV
8		2-5 Welmont Substation Activities	4x10		61 Jan-2024 A			-					
	A1000	Notice to Proceed	4x10	b00.0	01 Jan-2024 A		100%	Notice to Proceed					
	A1010	Project Start	4x10	600.0	03Jan-2024 A		100%	Project Start					
	A1020	Project Management	4x10	76.00d	03Jan-2024	14-May-2024	0%	-					
	A1030	Project Complete	4x10	600.0		14-May-2024	0%						
8	WBS: WELLMONT-	32-5.1 Mobilization	4x10	10.00d	03Jan-2024	18-Jan-2024		-		WBS	WELLMONT-32-5,1 Md	blization	
	A1040	Mobilization	4x10	10.00d	03-Jan-2024	18-Jan-2024	54.84%	-		Mobi	Ization		
E	WBS: WELLMONT-	32-5.2 Construction	4x10		08-Jan-2024	08-Apr-2024		1 1 1 1 1 1		THE REAL PROPERTY.	A T C A LOUD	The second second	101 1 1
		NT-32-5.2.1 Below Grade	4x10		22-Jan-2024	08-Feb-2024							100
	A1050	Grade Site	4x10		22-Jan-2024	01-Feb-2024	0%				-	Grade	Ste
	A1060	Dig Cable Trench	4x10		25Jan-2024	31-Jan-2024	0%				4	Dig Cable	Teench
	A1070	Set Forms and Steel	4x10	3.00d	05-Feb-2024	07-Feb-2024	0%						-
	A1080	Set Conduits	4x10	1.00d	01-Feb-2024	01-Feb-2024	0%					Set C	induits
	A1090	Pour Foundations	4x10	1.00d	08-Feb-2024	08-Feb-2024	0%						1
	- WBS: WELLMON	NT-32-5.2.2 Above Grade	4x10	37.00d	05Feb-2024	08-Apr-2024							
	A1100	Erect Steel Structures	4x10	8.00d	20-Feb-2024	04-Mar-2024	0%	1 1 1 1 1					
	A1110	Install Equipment	4x10	6.00d	05-Mar-2024	13-Mar-2024	0%						1.1.1.1
в	A1120	Connect Grouding	4x10	2.00d	05Feb-2024	06-Feb-2024	0%	11111					- C.
	A1130	Install Bus and Jumpers	4x10	8.00d	05-Mar-2024	18-Mar-2024	0%						
	A1140	Install Control Cable	4x10	12.00d	19-Mar-2024	08-Apr-2024	0%		ET T T T				
	WBS: WELLMONT-32-5.2.3 Fence		4x10	8.00d	08-Jan-2024	18-Jan-2024		1 1 1 1 2020	-	WBS	WELLMONT-325.2.3 F	ence	
	A1150	Install Fence	4x10	8.00d	08Jan-2024	18-Jan-2024	0%		-	Insta	LEence	1.5	
	WBS: WELLMONT-	32-5.3 Site Restoration	4x10	21.00d	09-Apr-2024	14-May-2024							
	A1160	Equiment Removal	4x10	5.00d	09-Apr-2024	16-Apr-2024	0%						
	A1170	Lay Site Stoning	4x10	3.00d	17-Apr-2024	22-Apr-2024	0%						
	A1180	Lay Access Roadway	4x10	4.00d	17-Apr-2024	23-Apr-2024	0%						
	A1190	Substantial Completion	4x10	12.00d	24-Apr-2024	14-May-2024	0%	and the state of the state of the				Defection to the bridge	

AACE International Recommended Practice No. 18R-97 COST ESTIMATE CLASSIFICATION SYSTEM – AS APPLIED IN


ENGINEERING, PROCUREMENT, AND CONSTRUCTION FOR

THE PROCESS INDUSTRIES TCM Framework: 7.3 – Cost Estimating and Budgeting

Configuration & Information Supply Chain Management

"Effective Systems Drive Sound Decisions"

PAGE 15

Quality Services

"Leaving nothing to chance"

COMPLIANCE WITH:

- Specification, Class, National and International regulations
- Human Systems interface based on ASTM F1166
- Model Based Work Instructions & Yard standards

Source

OO Spec Sect. 505.1

OO Spec Sect. 529.2

System

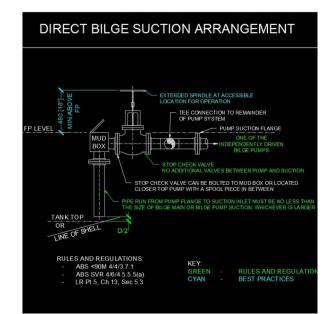
Ballast

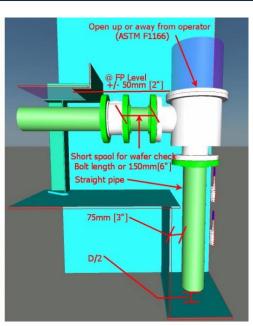
Ballast

Comprehensive Guide for Human-Systems Integration (HSI) for Marine Production Design

> 2100-MAN-0002 REV 0 2023-02-14

Genoa Design International, Ltd. 15 Dundee Ave, Mount Pearl, NL A1N 4R6 (709) 368-0669


SOLAS Ch II-1/35-1 3.10 (per SP5-Code Ch 2), LR- P5.C13.8.1.3/4 & 8.2.1	Bilge	The bilge main (and any bilge pump or its pipe connection to the bilge main) is to be so arranged that no part is situated nearer the side of the ship than b/5. Where any bilge pump or its pipe connection to the bilge main is situated outboard of the B/S line, then a non-return valve is to be provided in the pipe connection at the junction with the bilge main. The emergency bilge pump and its connections to the bilge main are to be so arranged that they are situated inboard of the BS line. If any part of a bilge suction pipe is located outboard of B/S (or in a duct keel), a non-return valve is installed on the pipe inside the compartment containing the suction open end. Note: B/S is measured at right angles to the centreline at the level of the deepest sub-division load line, where B is the breadth of the ship						
LR-P5.C13.7.6.1 & OO Spec Sect. 529.1	Bilge	Confirm: 150 liter (0.15 m ³) min capacity for machinery space (double bottom) bilge wells. (Note: Minimum sized well could be built from 12" sch XS pipe with a depth of 500mm); Bilge wells in other spaces are at least 0.03 m3 capacity.						
LR-P5.C13.7.4.1	Bilge	Confirm machinery space (and tunnel) bilge suctions (other than emergency suctions) are led from easily accessible mud boxes (c/w "quick access" covers) fitted with straight tail pipes to the bilges. Confirm strum boxes are not fitted on these tail pipes or to the emergency bilge suctions.						
LR-P5.C13.7.7.1	Bilge	Confirm space exist between bilge tail pipe open end and the bilge well bottom (or shell plate, as applicable) to allow a full flow of water (min = pipe D/4) and to facilitate cleaning (may require extra space).						
LR-P5.C13.4.2.1	Bilge	Confirm one bilge branch and one direct bilge suction at each side, where the double bottom extends the full length of the machinery space and forms bilges at the wings. (normally only applicable if bilges are formed by margin plates at the outboard edge of the tank-top)						
LR-P5.C12.2.9.2	Bilge	Confirm no welded sleeve joints are used in bilge pipes inside deep tanks						
OO Spec Sect. 529.1	Bilge	Confirm the bilge eductor is installed such that it is easily accessible and can be removed for cleaning.						
LR-P5.C13.4.4.1 & OO Spec Sect. 529.1 Bilge		Confirm if additional bilge suctions are required for the drainage of depressions in the tank top formed by crank pits, or other recesses, by tank tops having inverse camber or by discontinuity of the double bottom.						


Confirm suction bellmouths inside ballast tanks are flanged for removal.

operated Ballast valves are not fitted inside tanks).

COMPLIANCE STATEMENT

Confirm remotely operated ballast valves have an accessible means of manual operation (and remotely

Genoa's Future Product Offerings

PAGE 17

Future Problem

ESTIMATING SERVICES

• AACE Classification System adapted for shipbuilding

CRITICAL DESIGN REVIEW ADAPTATION:

• Increased granularity for large programs

VALUE AT RISK

• Measuring and reducing risk exposure

Estimating

CLASSIFICATION SYSTEM

- Class 5 Market Analytics
- **Class 4** Feasibility Studies
- **Class 3** Proposals
- **Class 2** Project Planning
- **Class 1** Pre-Execution

SUB HEADER TITLE

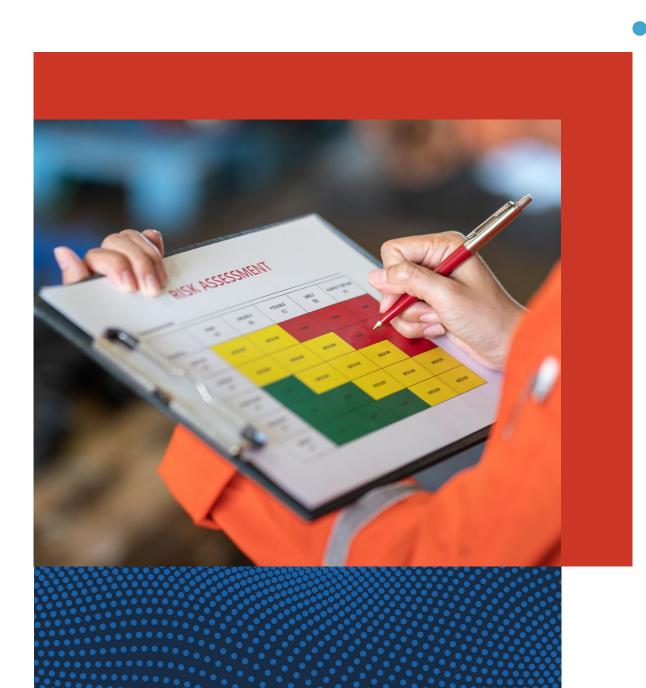
Critical Design Review

ADAPTATION

- CDR process intent
 - o Event driven activities
- Increase granularity of events
 - o Integration readiness levels

"Conducting design reviews when programs are not ready increases the risk that major design deficiencies go undetected until later"– Office of the Inspector General, Audit Report, 1992, The Critical Design Review Process for Major Defense Acquisition Programs

SUB HEADER TITLE


Value at Risk

PRINCIPLES OF VaR

- Identification of key risks
- Earned value deficiency
- Measuring risk exposure
- Schedule vs risk exposure

"The longer it takes to discover any problems, the more the flawed results will have undermined downstream activities, thereby amplifying the cascade of rework and its cost and schedule impacts"

- Browning & Eppinger, 2002

"A picture is worth a thousand words." A model is worth a million!"

Kyran Pennell, Genoa Senior Technical Consultant & SSI Client Champion

Thank You.

