GHG and Air Quality Emission Characterization for Alternative Marine Fuels

Patrick Kirchen

Jeremy Rochussen, Mhanna Mhanna, Nicolas Jaeger, Isaac Becker, Ahmed Abdalla, Mark Guan

University of British Columbia

Department of Mechanical Engineering

IMO's APPROACH TO GHG REDUCTION

Addressing climate change

Over a decade of regulatory action to cut GHG emissions from shipping

Dual Fuel Combustion

Low Pressure Dual Fuel (LPDF)

Liquid pilot fuel for ignition Pre-mixed gaseous fuel Natural gas, Hydrogen, etc Retrofits/Conversions
Heavy duty vehicles
Stationary engine
Marine engines

High Pressure Direct Injection (HPDI)

Liquid pilot fuel for ignition
Direct injected gaseous fuel
Natural gas, hydrogen, etc

Heavy duty vehicles Marine engines

HPDI: High Pressure Direct Injection **LPDF**: Low Pressure Dual Fuel

CASE STUDY: GHG Emissions from a NG LPDF Marine Vessel

OBJECTIVE: Evaluate and minimize actual Tank to Wake GHG exhaust emissions for LPDF natural gas vessels

- LPDF provides CO₂, NO_x, SO_x, and PM reductions
- Any CH₄ slip will negate CO₂ savings and can result in higher GHG emissions relative to diesel

CASE STUDY: GHG Emissions from a NG LPDF Marine Vessel Methodology

Instrument	Measurand	Comment	
AVL 493 iX PEMS (incl. FID)	CO ₂ , CO, O ₂ NO, NO ₂ CH ₄ , nmHC	H2 fuel needed Not CH ₄ specific	
Bruker MG5 FTIR	CO ₂ , CH ₄ , CO, NO, NO ₂ , H ₂ O,	Cost Process gasses / LN ₂ Significant training	
Commercial IR absorption System	Low cost Multi-species Turnkey	Low cost, turnkey; can be inaccurate for exhaust CH ₄	
WMS (IR absorption)	CH ₄	Calibration free Not (yet) commercially available Requires training	
Bag + off vessel FTIR/GC/MS	Multispecies Uses reference instruments	Slow Expensive (instrument or service) No time resolution	

SEASPAN RELIANT

2x Wärtsilä 9L34DF Engines (2x4.3MW; 4-stroke; med. speed) LNG and Diesel Fuel Systems Battery Bank (468 kWh)

CASE STUDY: GHG Emissions from a NG LPDF Marine Vessel

Methodology

Wavelength Modulation Spectroscopy (WMS) for "calibration-free" CH₄ Measurement

Sommer, et al. Environmental Science and Technology. 2019

Sommer, et al. CIMAC 2019

Cohen-Sacal, et al. SAE 2021

Jaeger, et al. CICS 2022

Mhanna,et al. CICS 2024 Mhanna et al. under preparation

Jaeger, et al. under preparation

FTIR

WMS

2018: Tank to Wake GHG Emissions – Diesel

2018: Tank to Wake GHG Emissions – Diesel vs LNG (CO₂)

2018: Tank to Wake GHG Emissions – Diesel vs LNG (CO₂ + CH₄)

Lean flammability limit

TODAY: Tank to Wake GHG Emissions – Diesel vs LNG (CO₂ + CH₄)

Modified engine control strategy developed by engine manufacturer to reduce CH₄ emissions

Measures include:

- Cylinder deactivation
- Decreased air fuel ratio at low loads
- Optimized pilot injection

Overall Tank to Wake GHG savings with natural gas operation relative to diesel

Very low load CH4 emissions still problematic

COMPARISON OF CH4 EMISSIONS FOR MARINE LPDF ENGINES

- All engines are medium speed, 4-stroke, low pressure dual fuel (LPDF) with similar cylinder bore (~340mm)
- RORO #1:
 - Hybrid drive (genset+batt+emotor)
 - 2018: As delivered
 - 2022: Cylinder deactivation
 - 2023: + pilot and air path optimization
- RORO #2:
 - Hybrid drive (genset+batt+emotor)
 - 2023: As delivered
- ROPax #1:
 - Direct drive (shaft + variable pitch prop)
 - 2023: As delivered
 - 2024: Cyl. deac + pilot and air path optim.
- Emissions depends on engine manufacturer, engine software, and vessel type

RORO: Roll on, roll off **ROPax**: Roll on + passenger

Combined Technological and Operational Measures for GHG Reduction

Optimization of Power Management (NG-LPDF- Hybrid Vessel) Reinforcement Learning for GHG Reductions

Measured emissions (steady state) and engine power histories (>300 sailings) used to train RL algorithm to identify instantaneous power distribution for minimum total GHG

Abdalla, et al. ADCHEM, 2024 Abdalla, et al. Under preparation.

Optimization of Power Management (NG-LPDF- Hybrid Vessel) Reinforcement Learning for GHG Reductions

Sample RL-based power distribution for one-way sailing

Dataset & Algorithm	Methane Emissions Reduction (%)		Carbon Dioxide Emissions Reduction (%)
RL - TD3 (train)	25.8		-1.3
OO – SLSQP (train)	34.2		-1.2
RL - TD3 (test)	27.2		-1.3
OO – SLSQP (test)	33.0		-1.3

RL – TD3: Reinforcement Learning – Twin Delayed Deep DeterministicOO – SLSQP: Offline Optimization – Sequential Least Squares Programming

Summary of predicted emission reductions using RL optimization, based on actual total vessel power demand for 300 cycles

Comparison of Tank to Wake CH₄ Emissions Factors (g_{CO2,e}/MJ)

Tank to wake emissions vary considerable between similar vessels

Actual value is dependent on engine+vessel technology AND operation

GREET: Reference emission factor (Marine Module 2022)

ST-VDC: Emission factor calculated based on measured steady state emission data and instantaneous engine load

ST-ADC: Emission factor calculated based on measured steady state emission data and modified duty cycle

D: Emission factor measure directly for limited sailings

Becker et al. CICS 2024 Becker et al. Under Preparation

LIFECYCLE GHG EMISSION REDUCTION: Biofuels and Renewable Diesel

Biofuel (SME) and renewable diesel (HDRD) implemented on commercial vessels can provide "drop-in" solution for decarbonization of legacy vessels

Pilot studies provide much-needed operational and emissions data for policy and fleet development

On-vessel measurement carried out for SME (RORO ferry) and HDRD (harbor tug) for seatrial and commercial operation.

IN-USE EMISSION MEASUREMENTS – Instrumentation Installations

Seaspan Trader RORO Ferry

Harbor Tug

IN-USE EMISSION MEASUREMENTS

Exhaust modifications for accurate emission rate measurements

RORO Ferry – unloaded seatrials Constant engine speed, variable load

Tug – bollard pull Propeller curve

LIFECYCLE GHG EMISSION REDUCTION: Biofuels and Renewable Diesel

Soybean Methyl Ester (SME) relative to diesel (RORO):

- Significant carbon intensity reduction
- Significant PM reduction
- NOx increase

HDRD relative to diesel (harbor tug):

- Carbon intensity reduction
- NOx reduction
- PM unchanged

RORO Ferry operated with Diesel and biofuel (SME)

Harbour Tug operated with Diesel and HDRD

UBC Urban Freight Emissions Program

KNOWLEDGE EXCHANGE WITH STAKE- AND RIGHTSHOLDERS FOR INFORMED DECISION MAKING

THANK YOU!

Seaspan: Harly Penner, Ahmed Khan, Daryl Lawes, Matt Vi

Crews: Seaspan Reliant, Seaspan Trader, Seaspan Raptor, Seas

of Oak Bay

BCIT

Clean Energy Research Centre

ayan Yeremi, Jeff

UBC: Jeremy Rochussen, Nicolas Jaeger, Mark Guan, Troy Hurren, Nishan Sapkota, Isaa-

Son, Jeff Yeo, Gibson Clark, Anand Kumar, Hamed Nikookar, Mhanna, Mhanna;

Steve Rogak, Amanda Giang, Bhushan Gopaluni

Environment and Climate Change Canada

Funding: ECCC (Climate Action Awareness Fund, Salish Sea Marine Emission Poduction Fund

NSERC (Alliance, CRD, Discovery Grant programs)

CFI Innovation Fund

Transport Canada Innovation Center

Seaspan Ferries, BC Ferries, FortisBC, Solaris

