

"Toward Automated Weld Path Planning for Cobots in Cluttered environments"

Presented By:

Jonathon Hayes, Stephen Canfield

Overview of Concept

- High Mobility Cobots in Ship Manufacturing
- Brief overview of Cobots
- Applications
- Sensors
- Overview of Process
- Results
- Demonstrations

Portable CoBot

- 1) Operator places HMMR on stiffener and switches maglocks
- 2) Robot scans and welds stiffener and gusset on either side
- 3) Operator releases maglocks, slides HMMR to the next stiffener
- 4) Repeat

CoBot Integrating with Positioner

CoBot – <u>Co</u>llaborative ro<u>Bot</u>

Robot intended for direct human interaction with shared space or proximity (IFR)

- Traditional robotics separate robots from human contact during operation (safety)
- Cobots achieve safety through weight, materials, geometry, sensing, controls

Recent development (1997 patent) stemming from GM robotics center and University research

Four Levels of Collaboration between worker and cobot (IFR)						
Coexistence	Work side by side (no protective barrier)					
Sequential Collaboration	Share the workspace					
Cooperation	Work on the same part, at the same time					
Responsive Collaboration	Cobot responds to worker					

Cobot companies - timeline

Cobotics (late 1990's) - Automotive assembly Kuka cobot – 2004 (LBR series) Universal Robotics (2008) Rethink Robotics – (2011) Baxter Yasakawa (Motoman, 2013) AUBO robotics (2014, Smokie Robotics) FANUC (2015) CR series ABB (2015) YuMi Welding Examples

- Fabtech 2018 2 welding cobots
- Fabtech 2023 20+?

Comparing robot specifications: Collaborative Vs. Traditional

UR10 Technical specifications

CAHILLCONSULTING, L.L.C.

Ex Scientia Tridens, '83

RTT

Item no. 110110

6-axis robot arm with a working radius of 1300 mm / 51.2 in

Weight:	28.9 kg / 63.7 lbs				
Payload:	10 kg / 22 lbs				
Reach:	1300 mm / 51.2 in				
Joint ranges:	+/- 360°				
Speed:	Base and Shoulder: 120°/s. Elbow, Wrist 1, Wrist 2, Wrist 3: 180°/s. Tool: Typical 1 m/s. / 39.4 in/s.				
Repeatability:	+/- 0.1 mm / +/- 0.0039 in (4 mils)				
Footprint:	Ø190 mm / 7.5 in				
Degrees of freedom:	es of freedom: 6 rotating joints				
Control box size (WxHxD):	475 mm x 423 mm x 268 mm / 18.7 x 16.7 x 10.6 in				

All dimensions are metric (mm) and for reference only. Request detailed drawings for all design/engineering requirements.

SPECIFICATIONS

Axes	Maximum motion range [*]	Maximum speed [*/sec.]	Allowable moment [N+m]	Allowable moment of inertia [kg•m ²]	Controlled axes Maximum payload [kg] Repeatability [mm]	6 6
5	±170	230			Horizontal reach [mm]	1,440
E.	+155/-90	200	-	-	Vertical reach [mm]	2,511
U.	*240/-175	230	2	122	Temperature [*C] Humidity [%]	0 to +45 20 - 80
R	±150	430	10.5	0.28	Weight [kg]	130
в	+90/-135	430	10.5	0.28	Power rating [kVA] Internal (/O cable (feeder control)	1.5 18 conductors
T	±210	630	3.2	0.06	Internal gas line	(1) 3/8" connection

Similar payload and reach, 29 vs. 130kg arm mass

Cobot Theory, Standards and guidelines

 ISO 10218-1/2:2011 Safety Requirements for Industrial Robots

CAHILLCONSULTING, L.L.C.

Fr. Scientin Teidens '8'

RT

- ISO/TS 15066:2016 Robots and robotics devices – Collaborative robots
- Subject to Quasi-static and transient effects
- Bounds on mass, speed control, and torque sensing

Operational impacts on cobot design

- Weight/mass
- Speed
- Accuracy
- Stiffness
- Exterior shell

Cobot features

- Real-time force sensing
- Speed-limiting
- Defined working boundaries

Portable Cobot applications:

HMMR (Cobot on mobile platform) Man-Portable cobot systems Integration with track/positioners

Cobot Workspace Sensing to Aid Portability

- Considering three sensing strategies to aid portable welding
 - Structured-light
 - Lidar scanning
 - Depth Camera

Laser-line or Structured Light Scanning

- High resolution scan of the work seam
- High resolution (sub mm)
- Small viewable space
- Speed depends on workspace motion
- Application requires prior knowledge of the workpiece

Scanning with Lidar

Scanning Lidar

- Combine 2D laser scan with Arm Kinematics to create 3D point Cloud
- Large viewable space
- Medium Resolution (1-2 cm)
- Speed depends on Scanning motion

RGBD (Depth) Camera

Depth Camera

- RGB data with Point Cloud data
- Large viewable space
- Lower Resolution (1-5 cm)
- 3D data with each image

- One-time training: Part and Path
- Future Operations on Part in arbitrary orientations
- Initial work has fixed Cobot, moving parts
- Intended work fixed parts, moving Cobot

Distribution A. Approved for public release:

Process

- Workspace sensing and clustering
- Cluster Matching
- ICP
- Job transformation
- Touch-point sensing / Real-time seam tracking

Distribution A. Approved for public release:

Reconstruction, Filters

 Reconstruct Image from 4 views

Figure 6: views of workspace

 Filters: Stochastic + Region Growing

Distribution A. Approv

Clustering: Euclidean + Color

- Cluster to Isolate Components in Workspace
- Compare Clusters to identify Workpiece

Workspace

Euclidean Clusters

Color-Based Clusters

Match Clusters with Target

 Compare parts (clusters) found in workspace with target (from training)

Selected workpiece (white)

- Use Target and Source Cluster to find Transformation
- Apply transformation to trained Weld path
- Resolution 1-2 cm
- Use Touch-point sensing for corrective shift to weld path
- Touch point sensing trained using workpiece geometry

Sample Problems for Portability

- 1) Increase the range of opportunities for mechanized welding through a lightweight, portable (or mobile) robot
- 2) First, apply to general fillet weld types
 - 1) 2F (Horizontal)
 - 2) 3F (Vertical)
 - 3) 4F (Overhead)
- Second, apply to specific jobs (welds joining stiffeners to deckplate, bulkhead intersections)

Motivating problem:

Demonstration

User teaches one part (robot learns from first part)

Place initial part

Robot learns initial part

Teach weld on initial part

Robot scans initial part

Demonstration

Robot automatically finds and welds new part

Arbitrarily place a new part

Robot welds new part

Robot scans new part

Robot Finds New part

<u>https://www.dropbox.com/scl/fi/sn3hqxq4dg38cyzootdux/final-video.mp4?rlkey=q9wpvcghwxc74jhegg4evynbx&dl=0</u>

Demonstration of HMMR Hardware

https://vimeo.com/528391072/171c0faace

CAHILLCONSULTING, L.L.C.

RTT

Questions

Distribution A. Approved for public release:

RTT and CahillConsultingLLC, a GENEDGE Alliance Member

22