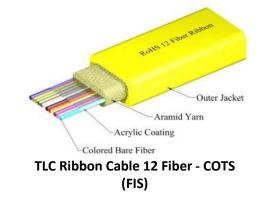
High-Density Ribbon Fiber Optic Cable & Tooling for Shipboard Installations

Jason Farmer, Ingalls Shipbuilding John Mazurowski, Penn State ARL

Electrical Technologies Panel Meeting April 3-4, 2024


DISTRIBUTION STATEMENT A: Approved for public release: distribution unlimited.

Background

- Shipboard network infrastructure is rapidly evolving and will impact fiber optic cables on future ship programs
- Navy ship programs are planning to use high density fiber optic cable configurations to meet increasing demands of shipboard networks
 - Ribbon fiber facilitates increased signals in smaller package
- This new fiber type is expected to reduce cableway congestion and facilitate the increasing demand on shipboard data networks
- New cable configurations will require new tooling, processes, and training in order to be successfully deployed on Navy ships

Fusion Splicer Individual Fiber

Fusion Splicer Ribbon Fiber

Standard M85045 Cable Example

Project Overview

- Goals & Project Objective:
 - To evaluate the impact of new, high-density fiber optic cable configurations for U.S. Navy shipboard applications
 - To identify process and tooling impacts of using this new technology
- Study will:
 - Identify shipyard impacts to new cable type
 - Evaluate new fiber and connector technologies
 - Conduct field studies
 - Provide feedback to Navy and manufacturers on field impacts
 - Identify new tooling required for implementation
 - Identify necessary changes and process updates to support successful transition at shipyards

Project Team

Ingalls Shipbuilding (Lead) Newport News Shipbuilding Penn State ARL Electro-Optics Center KITCO Fiber Optics Naval Surface Warfare Center Dahlgren Division

Project Technical Representative (PTR) Walt Skalniak, Ashby Co

NSRP Project Manager Nick Laney, ATI

Task Summary

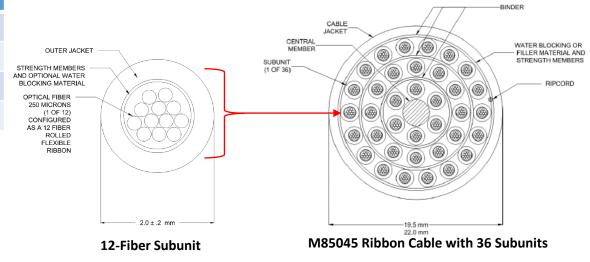
- Task 1 Review Requirements & Procedures
- Task 2 Industry Survey: Ribbon Fiber & Tooling
- Task 3 Hardware Evaluations
- Task 4 Analysis of Shipyard Impacts
- Task 5 Final Report & Technology Transition Plan

Project Status

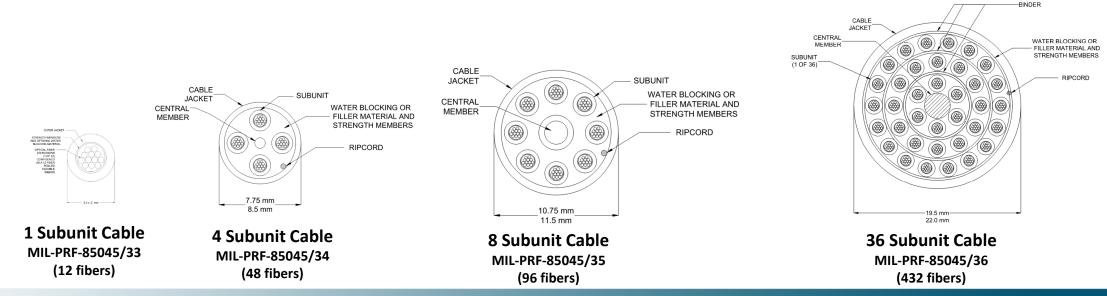
- ✓ Project kick-off meeting
- ✓ Requirements review
 - Cable
 - Ribbon (Fusion) Splicer
 - Ribbon Splice Protector
- ✓ Industry Survey
 - Cable configurations
 - Manufacturers
- ✓ Field Trial
- Final Report (in process)

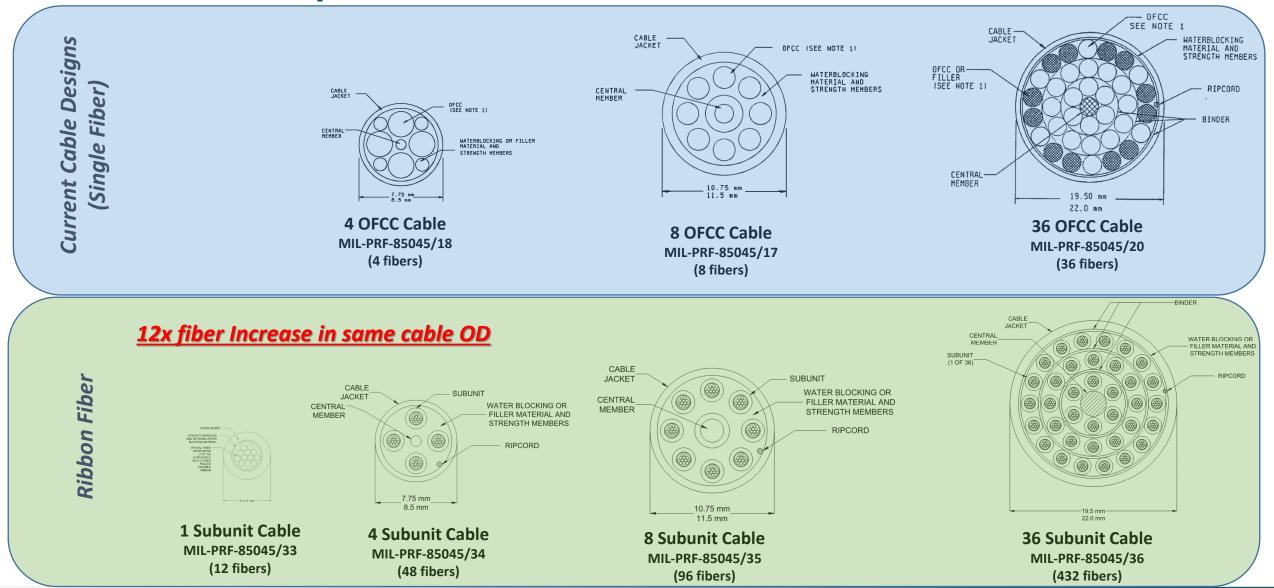
Fiber Optic Ribbon Cable

- Ribbon fiber is widely used in commercial markets
- High density configuration facilitates increased signals in smaller package compared to legacy designs


SPECIFICATION	# SUB UNITS	TOTAL FIBERS
MIL-PRF-85045/33	1	12
MIL-PRF-85045/34	4	48
MIL-PRF-85045/35	8	96
MIL-PRF-85045/36	36	432

COTS Ribbon Fiber Cable Examples (Belden)


Standard M85045 Cable Example


Requirements

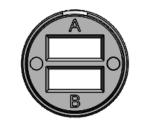
- **Ribbon Splicer**: CID A-A-5799 (Rev B updated to include ribbon splicing)
- **Ribbon Splice Protector**: MIL-PRF-24623/8
- Cable: MIL-PRF-85045/33 /36 provides detail on 1, 4, 8, and 36 subunit options
 - <u>MIL-PRF-85045/33</u>: CABLE, FIBER OPTIC, ROLLED FLEXIBLE RIBBON, TWELVE FIBER, SINGLE SUBUNIT, CABLE CONFIGURATION TYPE 4 (RIBBON CABLE), APPLICATIONS A AND B (AIRBORNE AND SHIPBOARD), CABLE CLASS SM AND MM
 - <u>MIL-PRF-85045/34</u>: CABLE, FIBER OPTIC, FOUR SUBUNITS, TWELVE FIBERS ROLLED FLEXIBLE RIBBON SUBUNIT, ENHANCED PERFORMANCE, CABLE CONFIGURATION TYPE 4 (RIBBON CABLE), CABLE CLASS SM AND MM
 - <u>MIL-PRF-85045/35:</u> CABLE, FIBER OPTIC, EIGHT SUBUNITS, TWELVE FIBERS ROLLED FLEXIBLE RIBBON SUBUNIT, ENHANCED PERFORMANCE, CABLE CONFIGURATION TYPE 4 (RIBBON CABLE), CABLE CLASS SM AND MM
 - <u>MIL-PRF-85045/36:</u> CABLE, FIBER OPTIC, THIRTY-SIX SUBUNITS, TWELVE FIBER ROLLED FLEXIBLE RIBBON SUBUNIT, ENHANCED PERFORMANCE, CABLE CONFIGURATION TYPE 4 (RIBBON CABLE), CABLE CLASS SM AND MM

Ribbon Cable Configurations

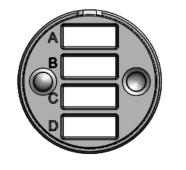
Cable Comparisons

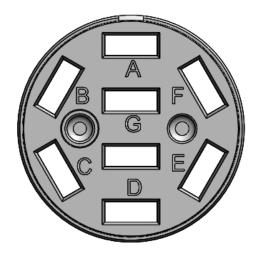
Shipboard Applications

- Use Cases
 - Space constrained ship designs
 - Need for future growth
- Benefits
 - Density (12x increased fiber count in same cable OD)
 - Reduced installation time
 - Future growth
- Shipboard Termination
 - Splicing Options
 - Cable to cable splice
 - Splice on connector
 - Fanout kit
 - Enclosure Options
 - Inside equipment
 - Fiber Interconnection Box (FIB)
 - Enclosure mounted to exterior of equipment
 - Fusion Splice Enclosure at Equipment*
 - FOICB/other enclosure mounted in compartment near equipment



Fanout Kit (examples)


MT Connectors


- AFSI THDM Series MT Connector
- 3 Configurations
 Up to 192 Channels
- Backshell options include:
 - Straight
 - 45[°]
 - 90⁰

Amphenol FSI THDM Series MT Connector System

MT Position Layout Options

Tools

- Fusion Splicer Kit
 - Fusion Splicer
 - Cleaver
 - Fiber Holders
 - Cleaning Kit
- Thermal Stripper
- Ribbonizer/Fiber Arrangement Tools

Ribbon Fiber Holders

AFL 90R Fusion Splicer

Thermal Stripper

Sumitomo Fiber Arrangement Tools

AFL Ribbonizing Tool

Shipyard Evaluations

- Field Trials conducted at Ingalls Shipbuilding January 23-24, 2024
- Goals/Objectives:
 - Familiarization of Ribbon Fiber Technology
 - Training on Ribbon Splice Tools and Process
 - Evaluate technology in shipboard environment
- Event supported by:
 - Ingalls Shipbuilding
 - KITCO Fiber Optics
 - Marmon Aerospace and Defense
 - Naval Surface Warfare Center Dahlgren Division
 - Penn State Applied Research Lab
 - Prysmian Group
 - Sumitomo Electric Lightwave
- The following were included:
 - COTS Fiber products
 - MIL Ribbon Fiber products
 - New tools
 - New processes
- Evaluation provided feedback on subunit configurations, tools, and process in shipboard environment

Next Steps

- Finalize Hardware Evaluations
 - Analysis of Laboratory Test Results
- Final Report

Project Team

	ORGANIZATION	ΡΟϹ	CONTACT
Project Lead/Prime	Ingalls Shipbuilding	Jason Farmer	(228) 935-7573 Jason.Farmer@HII-Ingalls.com
Team Members	Penn State ARL	John Mazurowski	(724) 295-7000 jsm23@arl.psu.edu
	KITCO Fiber Optics	Dan Morris	(757) 216-2220 dan.morris@kitcofo.com
	Newport News Shipbuilding (NNS)	David Ellis	(757) 688-6086 <u>david.ellis@hii-nns.com</u>
Participating Government Stakeholder	NSWC-Dahlgren Division (NSWCDD)	Chris Good	(540) 653-0627 <u>christopher.a.good8.civ@us.navy.mil</u>
NSRP Project Technical Representative (PTR)	NSRP Electrical Technologies Panel	Walter Skalniak	(757) 309-6344 <u>Walter.Skalniak@panduit.com</u>
NSRP Program Manager	ATI	Nick Laney	(843)760-3485 nicholas.laney@ati.org

Acknowledgements

- Special thanks to the following individuals and organizations who provided significant contribution to the success of the field trial event:
 - Chis Powell, KITCO Fiber Optics
 - Michael Reilly, Penn State University Applied Research Laboratory
 - Cedric Lindsey, Prysmian Group
 - Bruce Sinnott, Marmon Aerospace and Defense
 - Brandon Nelson, Naval Surface Warfare Center Dahlgren Division
 - William Urbanic, Naval Surface Warfare Center Dahlgren Division
 - Andrew DeGidio, Sumitomo Electric Lightwave
 - Greg Heard, Sumitomo Electric Lightwave

Questions?

