Testing Alternatives to Fiberglass for Marine Hulls—Progress Report

Eric Leonhardt Director Vehicle Research Institute Western Washington University Report for National Shipbuilding Research Program July 11, 2023

Vehicle History Renewable Fuels Composite Projects Material Testing for Hull Materials

0

Who Killed The Electric Car?

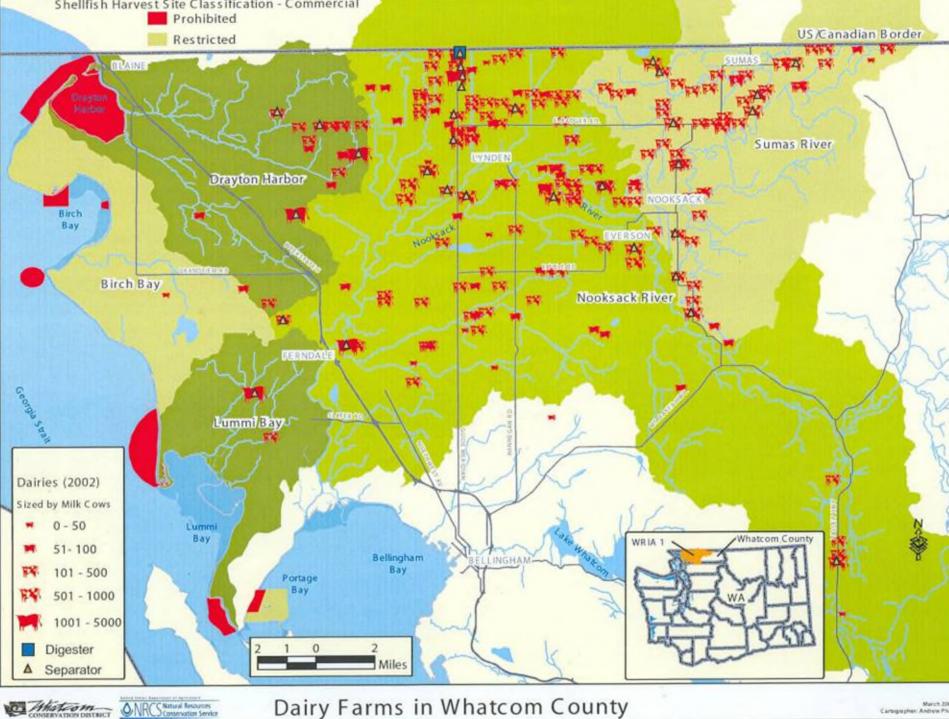
ALL D CART

https://www.youtube.com/watch?v=YCBc8pL1SGc

Progressive Automotive X Prize

Progressive Automotive

Efficiency Test: 112 MPGe (w/o penalty)


X Prize

Range Event: 100 miles Passed 62 miles on 12.2 kWh 172 MPGe! 17% SOC remaining

Dairy Farms in Whatcom County

March 20 Carbigsphar: Andrew Ph

Composites Projects

Hood Jig Tool Impact Structure Bus Chassis Kayak

Carbon Fiber Impact Attenuator

"Six pounds absorbs 100,000 lb impact force at the front of Viking 32. Slowing the vehicle from 50 mph at 40G."

24 Hour Kayak Distance Record: "CA-125"

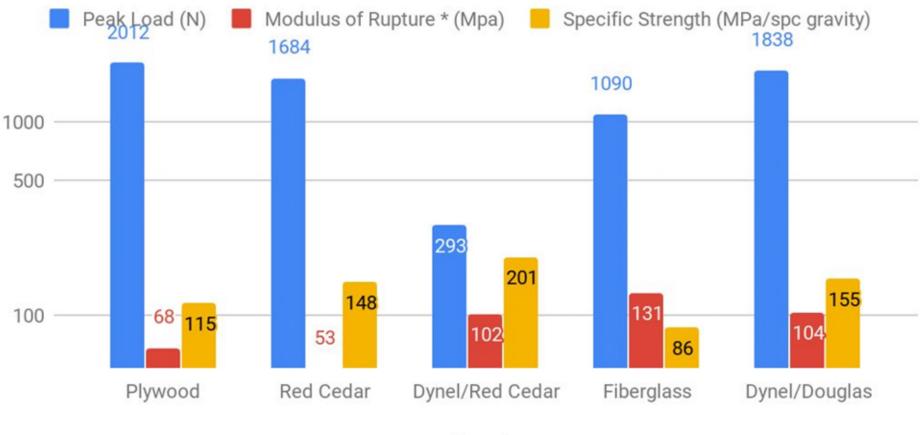
LOA: ~7.0m Hour Beam: 457 mm Lightship: 7.7 kg Distance: > 227 km

24 Hour Kayak Distance Record: "CA-125"

LOA: ~7.0m Hour Beam: 457 mm Lightship: 7.7 kg Distance: > 227 km

What alternatives to fiberglass and advanced composites exist for light, low carbon-footprint hulls?

Lindsay Lord - Classic Boat Library (fiberglassics.com)


Why is Dynel/Epoxy facing over a wood core compelling?

Sample	Peak Load N (Std. Dev.)	Modulus of Rupture MPa (Std. Dev.)	Specific Strength MPa/spc. gravity (Std. Dev.)	Maximum strain in outer layer mm/mm (Std. Dev.)
Plywood	2012 (278)	68 (9)	115 (16)	0.0069 (0.0008)
Red Cedar	1684 (239)	53 (10)	148 (21)	0.0098 (0.0006)
Dynel /Red Cedar	293 (60)	102 (18)	201 (27)	0.0119 (0.0021)
Fiberglass	1090 (13)	131 (5)	86 (3)	0.0277 (0.0007)

Mean of 5 Samples Built to Equivalent Scantling Rules Four-Point Bend Test

Specimen Material Properties Comparison

*Modulus of Rupture calculated by dynell thickness, represented as core

Sample

Mean of 5 Samples Built to Equivalent Scantling Rules Four-Point Bend Test

Why is Dynel/Epoxy facing over a wood core compelling?

Percentage of Ultimate Tensile Strength	Sample	Number of Cycles	Failure Notes
80%	Fiberglass 1	1	Instant Failure
80%	Fiberglass 2	1	Instant Failure
80%	Fiberglass 3	1	Instant Failure
60%	Fiberglass 1	1	Instant Failure
60%	Fiberglass 2	661	Delamination Left Side
60%	Fiberglass 3	763	Delamination Right Side
80%	Dynel 1	36325	Delamination Right Side
80%	Dynel 2	FEI SAL	Delamination Right Side
80%	Dynel 3	27135	Delamination Left Side

Dynamic Axial Testing of Fiberglass and Dynel Samples West Systems Epoxy, Vacuum Bagged **Experimental Method**

Scantling Rules Testing Standards Axial Load Tensile Testing Axial Load Dynamic Testing Future Work

Gerr, David, *The Elements of Boat Strength for Builders, Designers, and Owners*. Camden, Maine: International Marine McGraw Hill, 2000, 27-39.

Scantling Rules

Scantling Number, Sn	Sn	Boat Length Overall,	Beam, widest portion of hull	Hull Depth (midships from sheer to keel top inside hull)
Sn=LOA(ft.)*Beam(ft.) *Depth of Hull(ft.)/1000	1.02	32 ft.	8 ft.	4 ft.
Sn=LOA(m)*Beam(m) *Depth of Hull(M)/28.32	1.02	9.75 m	2.44 m	1.22 m

A hypothetical hull size is chosen to allow different materials to be compared using equivalent scantling values.

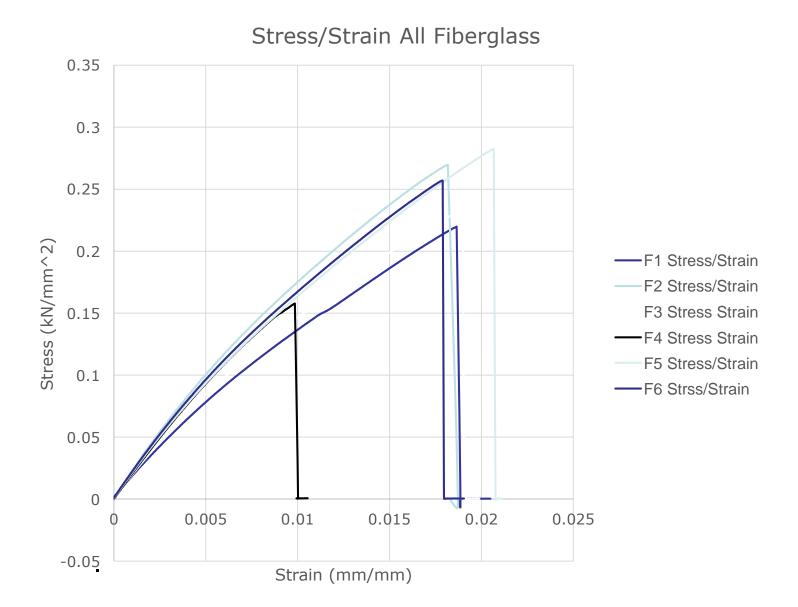
Gerr, David, *The Elements of Boat Strength for Builders, Designers, and Owners*. Camden, Maine: International Marine McGraw Hill, 2000, 27-39.

Scantling Rules

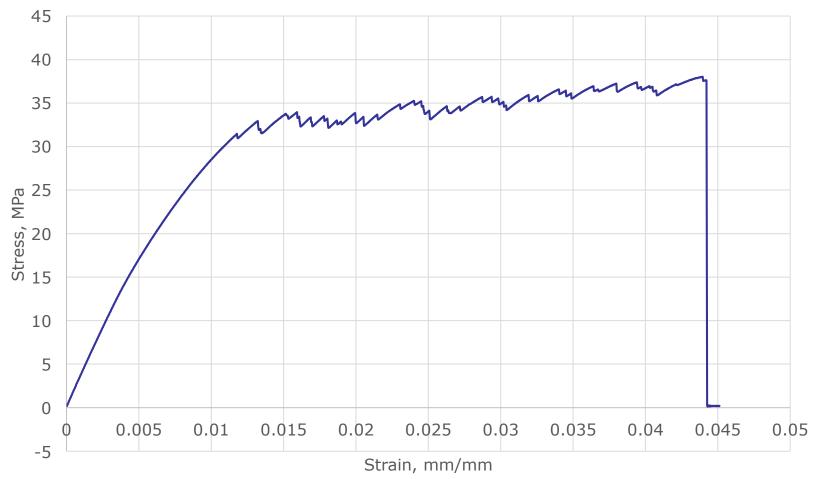
Material	Basic plank or Laminate Thickness Formula	Results S. I. units	Notes
FRP	= 0.25 * ³ √(Sn) (in.) [10]	0.25 in. 6.40 mm	Hand lay-up woven and/or fabric glass. Not chop strand or mat alone.
Plywood	= $0.74^{*}(Sn)^{(0.4)}$ (in.) [11]	0.75 in. 19 mm	Same thickness as basic wood planking.
Dynel Outside Hull Fabric Thickness	=11.1*(Sn) ^(0.43) oz./sq. yd. [12]	11.2 oz./yd ² 380 g/m ²	Dynel comes as a 4 oz. / sq. yd. fabric, use three layers.
Dynel Inside Hull Fabric Thickness	=7.36*(Sn) ^(0.36) oz./sq. yd. [13]	7.4 oz./yd ² 252 g/m ²	Dynel comes as a 4 oz. / sq. yd. fabric, use two layers.
Cedar Strip Core	= 0.34*(Sn) ^(0.44) (in.) [14]	0.34 in.* 9 mm	*Minimum size is 0.375 in. or 9.5 mm. Softwood can be low grade planking epoxy grouted together [15]

Gerr, David, *The Elements of Boat Strength for Builders, Designers, and Owners*. Camden, Maine: International Marine McGraw Hill, 2000, 27-39.

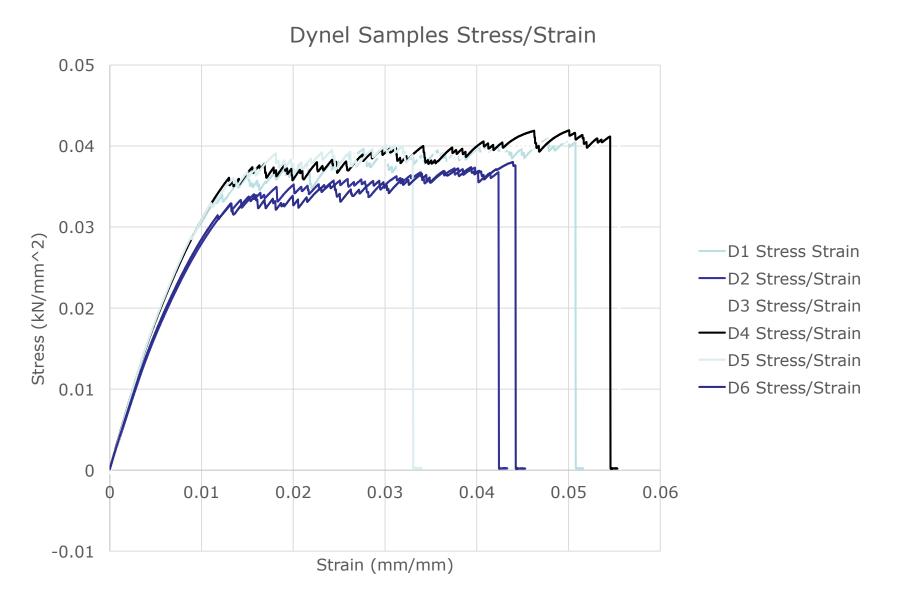
ASTM Standards


Sample type tested	ASTM Standard(s) followed
Plywood	D3043
Western Red Cedar	D3043
Dynel with cedar core	D7249/D7249M – 12, D5467
E-glass reinforced epoxy	D7264/D7264M - 15, D6272

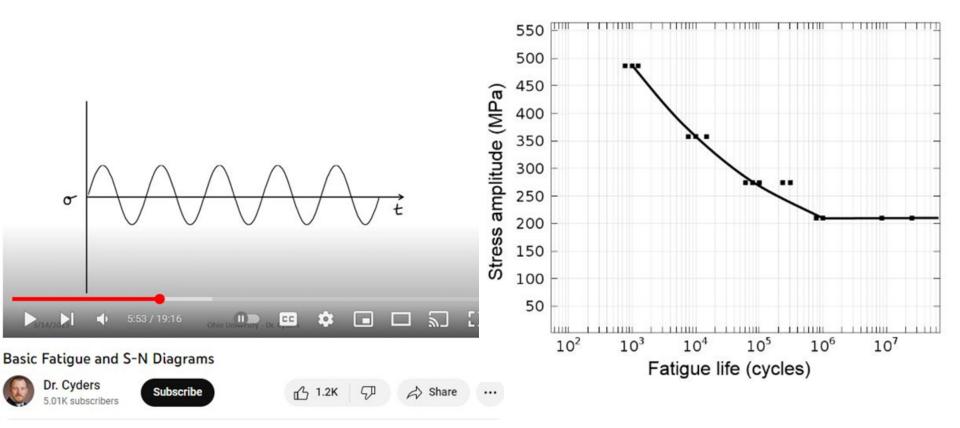
Fiberglass Tensile Test


Fiberglass epoxy composite vacuum-bagged wet layup.

Fiberglass Tensile Test



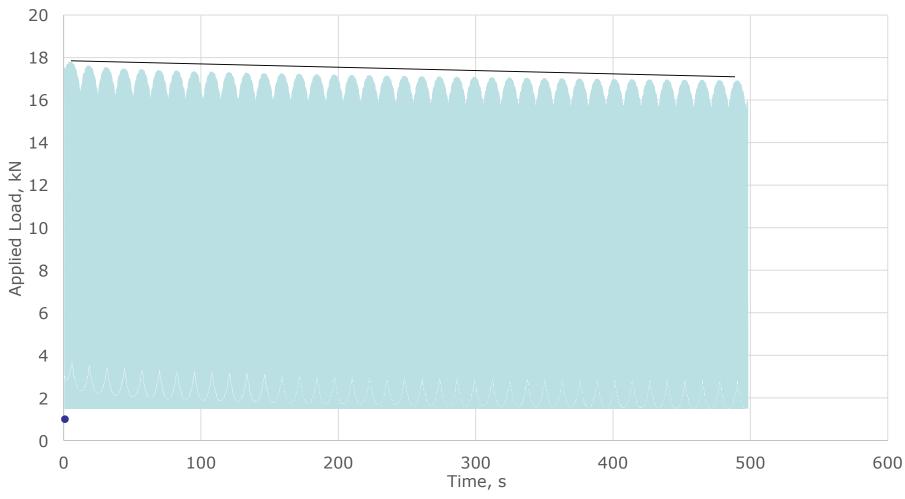
Dynel/Epoxy Tensile Test


Dynel/Epoxy Tensile Test

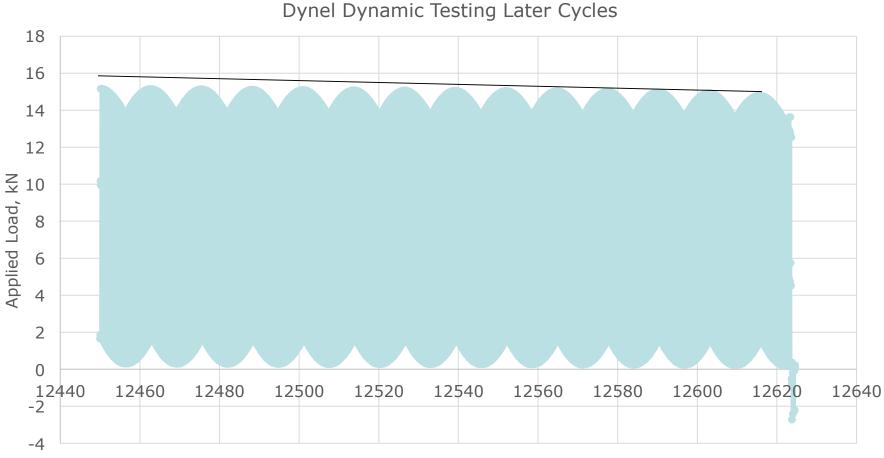
Standard Dynamic Testing

Dr. Cyders Explains Basic Fatigue and S-N Diagrams

COMSOL Explains S-N Diagrams



https://www.youtube.com/watch?v=bo4TdlQWSY4


https://www.comsol.com/blogs/how-to-obtain-fatigue-model-parameters/

Dynel Dynamic Testing

Dynel Axial Dynamic Early Cycles

Dynel Dynamic Testing

Time, s

Dynel Dynamic Testing

Show Movie

Future Work

Complete 40% UTS Dynamic Axial Complete 20% UTS Dynamic Axial Automate Data Manipulation Build S-N Curves 4 Point Bend Dynamic Testing Repeat Process with Innegra

Special Thanks

Dr. Tanveer Chawla Steven Evans Charles Nash Taylor Bentley Zena Moran Erik Foss Nathaniel Herbert Adam Hess

107-164