NSRP National Shipbuilding Research Program

EWI NSRP Welding Technology Panel Project Updates

Jim Hansen, EWI

August 1, 2023

GMAW Electrode and Procedure Technology for Silicate-Free Weld Deposition

NSRP Project Manager: Ryan Schneider NSRP PTR: Paul Hebert

August 1, 2023

Project Team

- EWI (prime)
 - Jim Hansen (PI), Joe Getgen (Engineering support), Dennis Harwig (Senior Technical Leader)
 - Steve Blevins (PM), Mark Schimming (VP Govt Business)
- ATI PM
 - Ryan Schneider
- NSRP Program Technical Representative (PTR)
 - Paul Hebert
- Participant
 - HII-Ingalls John Walks, Kevin Roossinck
 - NSWCCD Matt Sinfield

Background

- In GMAW of shipbuilding steels, silicates (small slag islands) form on the weld deposit surface and must be removed prior to multipass welding and before structural painting
 - A new reduced-silicate wire has been developed by ESAB for lean $\rm CO_2$ shielding
 - This wire has produced sound deposits in industrial fillet welding evaluations
 - Need to evaluate, apply, and / or modify silicate free electrodes for multi-pass groove welding to improve shipbuilding productivity and affordability

- Develop silicate-free GMAW technology mitigating the need for multipass weld interpass cleaning
- Explore & demonstrate (if possible) use with existing procedures, classify within existing Tech Pub 248 groupings, and expedite impact across shipyards using existing procedures

Technical Objectives

- Develop a matrix of welding procedures for tandem GMAW (T-GMAW) process at minimum and maximum heat inputs for two HSLA-65 steel plate thicknesses
 - Min / max heat inputs based on existing Ingalls T-GMAW procedures
- Evaluate the T-GMAW properties using representative procedure qualification tests per MIL-STD-271 and Tech Pub 248
 - Coordinate with NSWCCD to identify requirements for MIL-Spec classification
 - Compare qualification results to MIL-70S-6 weld wire
- Determine next steps to drive transition of the silicate-free wire technology into NSRP member shipyards
 - Silicate-free T-GMAW Demonstration & Transition workshop at EWI

Status to date

- Material Acquisition
 - ESAB's reduced-silicate wire is being shipped from their development facility in Sweden
 - Ingalls is in the process of prepping 0.5-in and 1-in thick HSLA-65 plate to be sent to EWI
- Develop procedure matrix at min / max heat inputs for two HSLA-65 steel plate thicknesses – In Process
- Benchmark metal transfer and silicate island formation of legacy ER70S-6 electrode – In Process
 - EWI's high speed video system will be used to understand metal transfer characteristics of both the legacy and reduced-silicate wire

NSRP National Shipbuilding Research Program

Next Generation Double Electrode GMAW Processes for Precision Fillet Welding

NSRP Project Manager: Ryan Schneider NSRP PTR: Paul Hebert

NSRP Weld Panel Meeting – August 2023

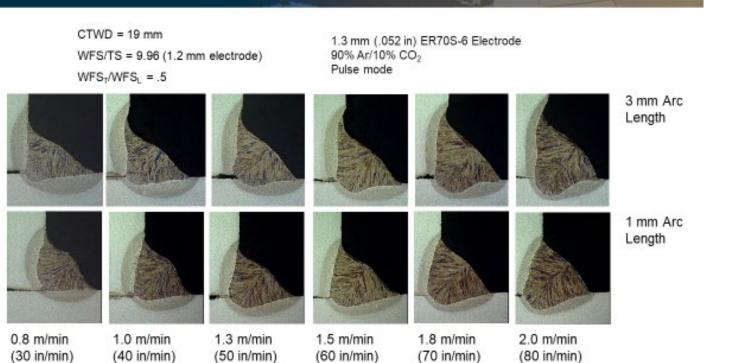
Approved for Public Release

Project Team

- EWI (prime)
 - Michael Carney (PI), Dennis Harwig (Senior Technical Leader)
 - Katie Hardin (PM), Mark Schimming (VP Govt Business)
- Government POC
 - Matt Sinfield, NSWCCD
- Participant
 - Cody Whiteley NASSCO
 - Steve Scholler, John Walks INGALLS

Background

- Double electrode gas metal arc welding (GMAW) processes, such as tandem and twin, typically provide two to three times the productivity of single electrode GMAW and flux cored arc welding (FCAW) processes.
- Need high productivity process for 4-mm precision fillet welds
 - Thin panel stiffener welding
 - Significantly reduce panel distortion and rework
- Assess precision welding processes equipment, apparatus, control technology, and consumables
- Double electrode processes also offer maximum productivity for both small, 4 mm, and large fillets.
 - Tandem GMAW widely used for larger (5-7 mm) fillet welds.
- Modern double electrode GMAW processes can also provide higher deposition rates, better deposit bead shape and quality, and more robustness than existing shipyard processes.


Objectives

- Evaluate and benchmark advanced double electrode GMAW processes and consumables for highspeed (4-mm) fillet welding.
- Survey industry, screen candidate processes, and select preferred process variants for feasibility testing. Candidate processes for feasibility testing include:
 - Twin (i.e., Lincoln HyperFillTM)
 - Hot wire tandem (Lincoln)
 - Tandem (Cloos)
 - Tandem CMT/Pulse-CMT (Fronius)
 - Adjustable configuration tandem (D&F Specialty Torch)
 - Advanced consumables for tandem (advanced metal core electrodes for high-speed performance)
- Downselect and develop ARCWISE windows & bead shape maps for up to three variants.
 - Target application: 4-mm horizontal fillet welds
- Provide technology transfer and demonstration workshop upon project completion

Process Comparison Conditions

- Material Thickness
 - 4 5 mm
 - Sand blasted/de-scaled
- DH/EH36 Grade
- ER70S-6
- Fit-up
 - 0 to 1.5 mm (1/16 in.) gap
- Shielding Gas
 - Typical FCAW
 - 94Ar/6CO2
 - Panel Lines
 - 100CO2
- Tack Size
 - Leg Size
 - 3-mm target
 - Length
 - 1 in.

Tandem GMAW Bead Shape Map – 5 mm

Optimum

Arcwise Bead Shape Map Example

Category A Data - Government Purpose Rights

Distribution Unlimited/Approved for Public Release.

Tasks

- Task 1 Project Initiation and Kickoff Meeting Complete
- Task 2 Survey Suppliers for Next Generation Double Electrode GMAW Technology – Complete
- Task 3 Feasibility Testing of Next Generation DE-GMAW Processes Complete
- Task 4 Precision Fillet Weld Operational Windows, Bead Shape Maps, and Productivity Analysis - In Process
- Task 5 DE-GMAW Process Benchmarking and Productivity Analysis In Process
- Task 6 Next Generation DE-GMAW Technology Workshop In Process

Task 2 – Survey Suppliers for Next Generation Double Electrode GMAW Technology

- Survey of welding equipment and consumable suppliers
- Identify the next generation equipment, consumables, and apparatus that can be used to deposit 4 mm and larger fillet welds to support panel line assembly.
 - Equipment suppliers will be consulted on recommended setups and parameters for twin, hot wire tandem, adjustable configuration tandem, and advanced consumables for high-speed precision fillet welding.
 - Supplier "in-kind" benchmarking support welcome to maximize project data
 - Fronius
 - Miller
 - Select Arc

Market Survey

COMPANY	POCs	TECHNOLOGY	DEPOSITION
IINCOLN.		HyperFill	24-Lb/Hr
	Steve Peters		
	a	Hercules	30-Lb/Hr
Miller.	Steve Massey		
		tps/i TWIN	35-Lb/Hr
Fronius	Shaun Relyea		
		Tandem Synergy Pro	35-Lb/Hr
CLOOS	Mike Moore		
ESAB *	Nate Lott		
		SyncroFeed	18-Lb/Hr
	Larry Barley	Buried Arc	Not Applicable
SELECT		Consumables	
ARCING	Ben Kahut		
		Consumables	Not Applicable
	Kim Francis		••
		SpinArc	Not Applicable
BINZEL	Tom Graham		·····
		Tandem Torch	Not Applicable
MIG	Steve Moerke		·····

Task 3 – Feasibility Testing of Next Generation DE-GMAW Processes

- Candidate double electrode process variants will be evaluated with feasibility tests.
 - For each process combination, a series of constant deposit area (constant wire feed speed/travel speed ratio) tests was performed at two arc lengths using the ARCWISE method. This method used systematic tests to develop operational windows, assess bead shape, and determine productivity for weld joint applications.
 - For feasibility tests, all assessments were made using only visual, dimensional, and weld surface quality data.
 - Up to three preferred processes were selected for detailed ARCWISE testing in Task 4.

Task 3 – Feasibility Testing of Next Generation DE-GMAW Processes

	COMPANY	POCs	TECHNOLOGY	DEPOSITION
	LINCOLN.		HyperFill	24-Lb/Hr
	ELECTRIC	Steve Peters		
			Hercules	30-Lb/Hr
	//// Miller	Steve Massey	nercules	50-E0/11
×		,		
			tps/i TWIN	35-Lb/Hr
Down selected	Fronius	Shaun Relyea		
			Tradau Cara Da	25.11.01.
`	CLOOS	Mike Moore	Tandem Synergy Pro	35-Lb/Hr
		Mine Moore	Noore	
	SELECT		Consumables	
	ARCINC	Ben Kahut		
			SpinArc	Not Applicable
		Tom Graham	Spinkie	Not Applicable
			Tandem Torch	Not Applicable
	MIG TIG	Steve Moerke		

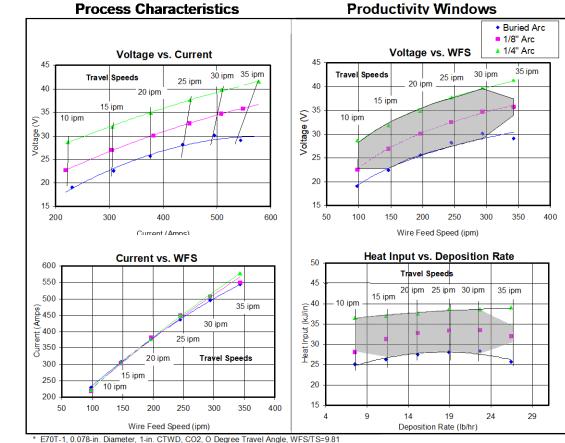
Down selection into Task 4

- Recommendations are to move forward:
 - Miller Hercules
 - Fronius tps/i TWIN
 - Cloos Tandem Synergy Pro.
- Select Arc 70C-10 should also be considered when additional bead wetting is needed.

Task 4 – Precision Fillet Weld Operational Windows, Bead Shape Maps, and Productivity Analysis

- Each process in Task 3 can run independently from each other.
- Systematic ARCWISE tests will be performed on up to three process combinations from Task 3.
 - For each process combination, a series of constant deposit area (WFS/TS ratio) tests will be performed at two arc lengths.
 - The tests will be performed over a full range of travel speeds (for example 0.25 to 2 m/min) to determine the minimum speed needed for fusion, the range of acceptable welding conditions, and the maximum speed to process failure.
 - Each test will be examined using visual and dimensional methods.
 - Metallographic sections will be removed from each test to characterize bead shape dimensions and quality. <u>Category A Data - Government Purpose Rights</u>

Distribution Unlimited/Approved for Public Release.


Image: Second second

**Dierksheide

- TS range 0.25 to 2.0 m/min?
- Arc Lengths 1-mm and 3-mm?

Task 5 – DE-GMAW Process Benchmarking and Productivity Analysis

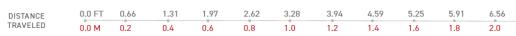
- This task will analyze all the test data from Task 4.
- Operational windows will be used to determine process tolerance.
- The ARCWISE data set will include the operational windows and plots that characterize the relationship between voltage, current and wire feed speed; heat input versus deposition rate; and bead shape relationships.
- Recommended welding procedures will be determined from the operational windows for making precision 4-mm fillets.

Category A Data - Government Purpose Rights Distribution Unlimited/Approved for Public Release. **Harwig

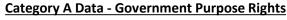
Next Steps

- Task 4 Precision Fillet Weld Operational Windows, Bead Shape Maps, and Productivity Analysis
 - Systematic ARCWISE tests will be performed on up to three process combinations from Task 3.
- Task 5 DE-GMAW Process Benchmarking and Productivity Analysis
 - Analyze test data from Task 4
 - Operational windows will be used to determine process tolerance.
 - The ARCWISE data set will include the operational windows and plots that characterize the relationship between voltage, current and wire feed speed; heat input vs deposition rate; and the bead shape relationships.
 - Recommended welding procedures will be determined from operational windows making precision 4-mm fillets.
- Task 6 Next Generation DE-GMAW Technology Workshop
 - One-day workshop in September to demonstrate the preferred process processes and review performance data with U.S. shipyards.

Questions?


Old slides from all panel meeting

Lincoln HyperFill


- Twin-wire GMAW solution
- Designed for semiautomatic and automatic applications
- Deposition rates above 18 lbs/hr (24+ lbs/hr robotically
- Ease-of-use (one power supply/feeder)
- Not direction dependent

PROCESS COMPARISON - DEPOSITION RANGE

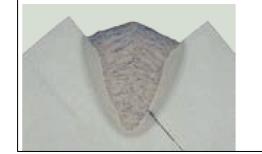
Distribution Unlimited/Approved for Public Release.

24

Miller Hercules

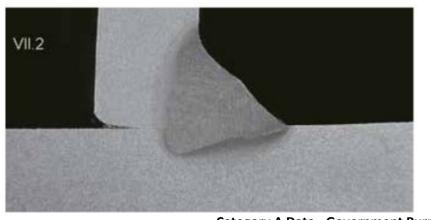
- Single-wire GMAW solution
- Designed for semiautomatic and automatic applications
- Deposition rates above 30.5 lbs/hr robotically
- Ease-of-use (one power supply/feeder)
- Not direction dependent
- Customer wire (FabCOR) tailored to Hercules process

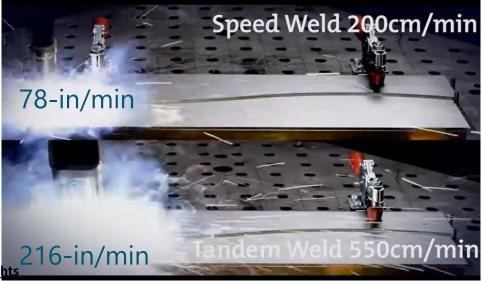
Fronius TPSi TWIN


- Two-wire GMAW solution
- Designed for semiautomatic and automatic applications
- Deposition rates above 35 lbs/hr (robotically)
- Two separate welding systems
- Direction dependent
- CMT/PMT/GMA combinations

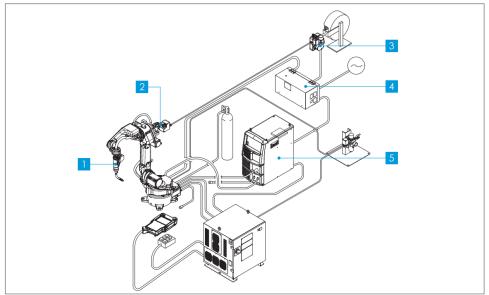
High deposition rate

One welding pass is all it takes. Thanks to the high deposition rate of the TWIN system, welds that needed to be welded in multiple passes are a thing of the past.


Parameters	
vs [cm/min]:	4.72 in/min
Dep. rate =	55.33 lb/h
Contact tip angle =	0°
Lead Vd =	PMC 106.29 in/min
Trail Vd =	PMC 78.74 in/min
a-dimension =	0.21
Penetration =	0.15 in


CLOOS Tandem

- Two-wire GMAW solution
- Designed for semiautomatic and automatic applications
- Deposition rates above 35 lbs/hr (robotically)
- Two separate welding systems
- Direction dependent



OTC

- OTC discontinued all double electrode processes in 2008
- Using their Syncrofeed system the max deposition rate is 18 lbs/hr
- Single-wire GMAW solution
- Designed for semiautomatic and automatic applications

Hobart

• Only off the shelf options

Certificate of Conformance to Requirements for Welding Electrode

Product Type:	FabCOR 100
Classification:	E100C-K3
Specifications:	AWS A5,28/A5,28M; ASME SFA 5,28
Diameter Tested:	.045"
Date Tested:	10/25/2021
Date Generated	11/16/2021

This is to cartify that the product named above and supplied on the telesconed onlar member is of the same classification, manufacturing process, and manufal trajercoses in the handral ALES has used to fee too the two one addition to how how, the reades of tobic are show below. All tota reades to the two one addition to the processors, the reades of tobic are show below. All tota reades to the two one of the interface to the two one of the interface total and total are show below. All total reades to the two one of the interface total and total are show below. All total reades to the two one of the interface total and total and the interface total and total are show below. All total reades to the interface total and the interface total and total and total are show below. All total reades to the interface total and total a

THE STEEL USED IN THIS LOT OF MATERIAL WAS MELTED AND MANUFACTURED IN THE U.S.A.

			~~~			200	Tes	t Set	tings				2	02.00										
Shally	Medum	Arp	/Pis	iny	Vide WF		WFS injust	-	ESO 140			Т	~	wheel	FIC:	Τ	-	7444	nici		Travel for iniminionin			
N21-4	4045	240	/ 00	(P	25	3	05 (8.5	9		78(19	1			300(1	(9)	Т	- 3	00(14	(2)		15-(38,1)			
MI1.	ArCa	210	/ 00	(P	27		305 (9)			,75 (19	9			- 0			-	0	1					
				1.1.1	Me	chan	icali	Prop	erties	- Ter	nsille:	-				_			_				Ξ	
Shekin	g Medium		er, No.		Testing	Condi	60me	U.	R, Tensi	le Stre	ngth g	0.00	N)	10	AI 51	ΨŪ	h jesi	(6.6)	1		Gorg.	6 m 2	Ē	
M21k	ArGals		63132		Aged 4	d His	190 <b>F</b>		1	12.000	1700	1.			95	866	654	3			1	1	_	
MITS	408	1	63136		Aged 4	ð Hen i	200F		. 9	16,000	1745	1.			304	.000	(71)	7)			- 2	٩	_	
					Me	char	vical		erties															
Shieting	Medure	flad,	No.	Test	ing Con	ditoria		Terry	6. F (G)		- 11	duidu	÷	1.84	0		Aug	无数	<i>ii</i> )		Type			
M21-A	1045	19(3)	32		As Web)	el .		-0	0(+01)		. 60	62,64	ιp	0.84.8	ŋ		- 65	188	)		Charpy-V-Mu			
Mille		PE31		1	As Web	uđ 🛛		-0	0(451)		75.70.68 (102.95.92)						1	(96	)		Chatpy-W-M			
RUNK I	Radiography	(haje)	Ren	-		ricert		Fliet Web Test Outriest Vietnal												_	2			
10.02	Carl		_	+-					_	Contrast					-	-	-	-			-	-		
			_	_		C	hem	ical /	Analysis											-				
Shieking Me	sdum / Ref, No	C C	April a	P.	- 8	5	Ċ.	0	¥.	10	180	AL 1	i n	e Gi	0 n	150	ŕ.	55	n M	41	Zn Be	100	A	
M25-ArC-2	5 / PE3/32	6.06	1,45	0.004	6.007	6.39	6.53	0.04	+.01	1.56	4.35		Т		П								Г	
MINAVOR	F 7 PE3136	0.06	1,66	0,008	6,007	1,43	6,05	0,04	+.,01	1,54	9,36	ΓT	Т	T	П	Г	Γ.		T	Т		Ľ	Ε	
				Diff	lusible	Hyd	roge	n Co	flecte	d per	AW.	5 A4	1,3	1			_							
	M00-A/C-1	1						3.0 m	1100g i	l weikt i	meluli	lor de	15 1	n slam	ehar 2	95.1	skei v	e ha	nadily	1			_	
	M21-M/C-21	6					1.1	3,2 mi	inddy o	t weekt	retal	kur Joh	15 H	n dam	eter 2	14.1	elan	e hu	nitity	٢				
etification and l	anited Warnative	ben for t				Derel	here	Quality	Amer	nce Re												ter alter		

FILLER METALS

**Certificate of Conformance** to Requirements for Welding Electrode

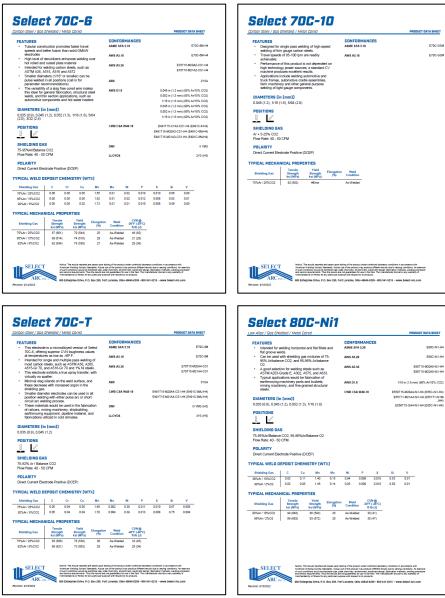
Product Type:	FabCOR 1100	
Classification:	E110C-K4 H4	
Specifications:	AWS A5.28/A5.28M; ASME SFA 5.28	
Diameter Tested:	1/16"	
Date Tested:	9/8/2022	
Date Generated:	9/16/2022	

This is overify that the product named above and supplied on the referenced order number is of the same classifications, manuforming process, and material registrements as the nutratical which was used for the set that was uncocheded on the date aboves, the required is of which are above block. All tests required by the specifications barrow for characteriants were performed at that time and the material tested rest all requirements. It was manufactured and specifications barrow for characteriants were reformed at that time and the material tested rest all requirements. It was manufactured and specifications above ref120 5001. ASIXMS X01 and and the specifications and Milary requirements, as a splicishich. This document supplies taxing that for testing the forme-specific time of non-specific time performance and Milary requirements, as a splicishich. This document supplies taxing the requirements and the requirements and the requirements and the requirements are splicishich. This document supplies taxing the requirements and the requirements are splicishich. This document supplies taxing the requirements and the requirements and the requirements are splicishich. This document supplies taxing the requirements and the requirements are splicishich. This document supplies taxing the requirement and taxing tax with the requirements of EN 10204, type 2.2 certification.

#### THE STEEL USED IN THIS LOT OF MATERIAL WAS MELTED AND MANUFACTURED IN THE U.S.A.

							Tes	t Set	tings																	
Shieldi	ng Medium	Amp	s / Pola	rity	Volts	in/n	WFS nin(m/r	nin)	E	SO in(r	nm)		P	rehea	t F(	C)		Inter	rpas	s F(	(C)	1.1		l Spe (cm/r		
M2	ArC-10	350	/ DCE	P	26	2	80 (7.1	)		.75 (19	9)	Т		300(	149	)	Т	3	00(1	49)	,	Г	13	(33)		
M21	-ArC-25	350	/ DCE	P	29	2	80 (7.1	1)		3/4 (19	9)			300(	149	)		3	00(1	49)	_		13	(33)		
				_	Me	chan	ical	Prop	erties	- Te	nsile		_				_			_	_		_			
Shield	ing Medium	R	ef. No.		Testing	Condi	tions	U	t. Tens	le Stre	ngth p	si (MF	Pa)	1	field	Stre	angth	n psi	(MP	a)	Т	Ek	ong.9	6 in 2	-	
M2	0ArC-10	P	E4218		Aged 48 Hrs 220F				1	27,000	(876	)				114,	000	( 786	5)		T	_	20	)		
M2	1-ArC-25	P	E4690		Aged 4	8 Hrs 220F			1	20,000	(827	)	_	$\square$	-	110.	000	(758	3)	_	$\top$	19				
		-			Me	char	ical	Prop	erties	- Im	pact		_	-						_	_	_				
Shieldin	g Medium	Ref. I	No.	Test	ing Cond	ditions		Tem	p. F (C		In	dividu	als	ft.lb.	(J)			Avg.	ft.lb	).(J)	)		Т	ype	_	
M20	ArC-10	PE42	18		As Welded			-6	0 (-51)		30,30,32 (41,41,43)							31	(42	2)	_	Charpy-V-Notch				
M21-	ArC-25	PE46	90		As Weld	ed		-60 (-51)			34,40,36 (46,54,49)						37 (50)					Charpy-V-Notch				
Ref.No.	Radiographic		tion	<u> </u>			-	_	-	_		et We			-	_		_		-		_			_	
PE4218	Confo					orizont						Overh									/ertica		_		_	
PE4690	Confo	rms			H	orizont		leel 4	land to	-		Dverh	ead	1.			_	_		V	/ertica	<u> </u>			_	
		_	_				-		Analy	_	_		-	_	_	-	_	_	_	-	_	_	_	_	_	
-	fedium / Ref. No	C	Mn	P	S	Si	Cu	Cr	V	Ni		AI 1	۱N	ьс	OB	8 W	Sn	Fe	Sb	N	Mg	Zn	Be	Sb	As	
M20ArC-	10 / PE4218	0.10	1.66	0.012	0.012	0.66	0.05	0.24	0.01	1.83	0.49															
M21-ArC	25 / PE4690	0.06	1.48	0.011	0.010	0.54	0.06	0.24	< .01	2.04	0.50															
				Diff	usible	Hyd	roge	n Co	llecte	d pe	r AW	S A4	1.3													
	M21-ArC-25	5						2.5 ml	100g c	f weld	metal f	for 1/1	16 i	n dia	mete	er 13	3% re	elativ	ve hu	umie	dity	_				
	M20-ArC-10	)						3.0 ml	(100g c	f weld	metal t	for 1/1	16 i	n dia	mete	or 48	3% re	elativ	ve hu	umie	dity	_				
											-		-		_	_				_	_	_	_		_	
					k	ne	0	11	h	ne	~	/														

James A. Owens, Q.A. Specialist


Certification and Limited Warranty - Data for the above supplied product are those obtained when welded and tested in accordance with the above specification. All tests for the above classification were satisfied. Other tests and procedures may produce different results.

**Category A Data - Government Purpose Rights** 

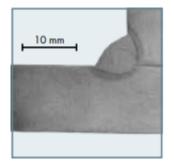
Distribution Unlimited/Approved for Public Release.

#### Select-Arc

- A few options that are off the shelf tailored to high-speed welding (automotive)
- If project needs willing to tailor custom electrodes



Category A Data - Government Purpose Rights


Distribution Unlimited/Approved for Public Release.

#### Abicor Binzel SpinArc[®] Automatic MIG Gun



Pos.	Setting scale	Rotation diameter								
0	-	no spin								
1	1	1.0 mm								
2	2	2.0 mm								
3	2 3	3.0 mm								
4	4	4.0 mm								
1 2 3 4 5 6 7 8	4 5	5.0 mm								
6	6	6.0 mm								
7	7	7.0 mm								
8	8	8.0 mm								
0	2 4	6 8								
1	3	5 7								
	and the second second	والمتلول المحمد المحمد المحمد								

- Tool free spin diameter adjustability
- Digital motor control circuit for precise spin speed control
- Contact tip extensions for deep, narrow, grooved welds
- Automated and robotic applications



Fillet weld:

increase travel speeds by 25 to 50% with ideal penetration profile

#### **D/F Specialties**

- 850 Amps @ 100% Duty
- Max 1700 Amps
- The distance between the tandem contact tips (the wires) can vary by removing the body screws of one or both inner bodies. This allows rotation of each inner body increasing or decreasing the distance between the two welding wires.
- The D/F Tandem Barrel inner bodies can be either straight or bent to desired degrees to help achieve different center-point distances between the two tandem contact tips and are easily changeable.





#### Wenglor

- Regarding reflective surfaces, given the history of using profile sensors in many different industries Wenglor has tools/filters and algorithms built into the sensors to handle reflection. Wenglor also offers red and blue lasers from 2M to 3B power of lasers.
- Using the fastest travel of 2 meters per minute (2000 mm per minute/33mm/second) there would be a look ahead distance of at least 0.44 mm.

