

2023 All Panel Meeting

Center for Naval Metalworking Cold Cutting Steel Navy ManTech Project S2892

PoP: Sep 2020 – Jan 2023

Chance Roman – CNM
Susan Tardiff – Bath Iron Works

For additional information contact: https://cnm.ati.org/contact-us/

Problem Statement

- During the building of steel ships, it is common practice to employ "hot work" methods for cutting steel, not only in fabricating the ship components such as plate and shape products, but also when removing temporary attachments or other welded components that may need to be relocated later in the construction cycle.
- Current hot work methods employ the use of handheld burning torches and arc gouging equipment, which lends way to imprecise cuts.
- These cuts can result in wasting lifting pads by cutting too much material and cause rework due to damage on finished areas of the hull.

Project Goals

Primary goal is to reduce hot work when removing Lifting & Handling attachments during later

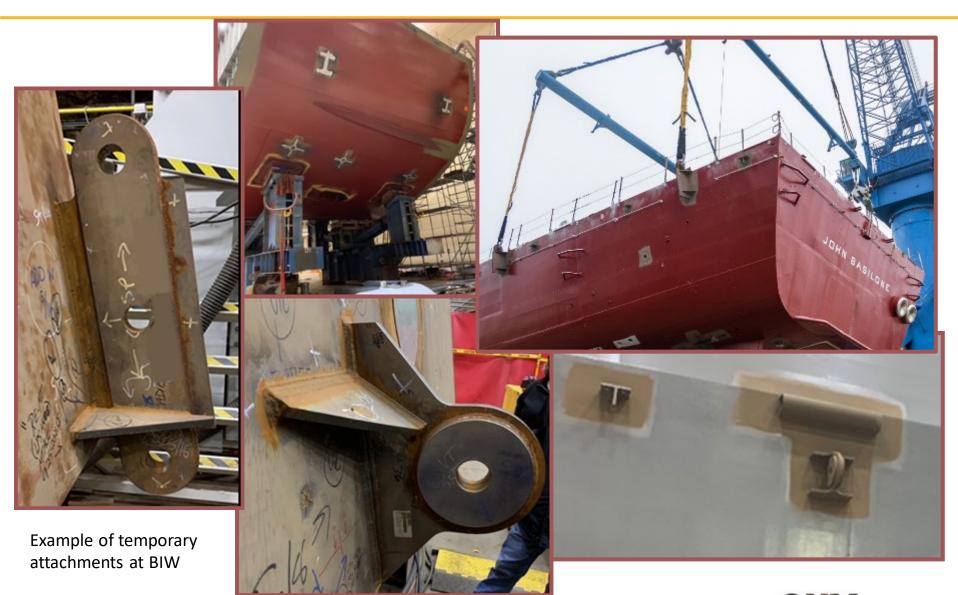
stages of construction

- Reduces impact to far-side, finished interior spaces
 - Eliminates requirement for hot work mitigation plan
 - Backside evaluation
 - Protective fire coverings
 - > Fire watch
 - Paint/insulation/equipment removal
- Reduces need for surface repair of base material (hull)
- Reduces extent of hot work safety boundary
- Allows operator to work outside of immediate cutting area

Secondary goal is to provide a clean cut to the attachment

- Diamond wire cutting creates a clean cut
 - Decreased labor hours for refurbishment of attachments
- Customized pulleys will place wire rope close to the hull surface
 - Maximizes re-use of attachments
 - Reduces grinding requirements for removal of slug left behind from the attachment
- Reduced extent of rework for paint touch ups in way of the attachments

Additional potential benefits:


- Opportunity for expanding cold cutting applications
- o Improved safety environment and reduced potential of injuries or long term ergonomic issues

PUBLIC RELEASE

Temporary Attachments

S2892 – Cold Cutting Steel NSRP All Panel – March 28 - 30, 2023 GNM

Selected Technology

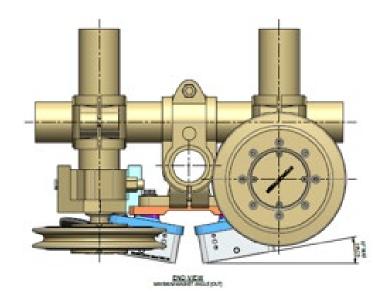
WCE17 High Cycle Wire Saw

Specifications:

Wire Capacity:	56 feet
Wire Required:	Minimum 11 feet
Maximum Wire Storage:	41 feet
Weight:	190 lbs. without cover, 216 lbs. with cover
WCH17 Hydraulic Requirements:	17-21 GPM Power Pack,BS-2 Remote Control Unit
WCE17 Electric Requirements:	30 kW Power

- Modular Wire Saw for one-person operationassembles into separate light-weight pieces
- 16kW, 22HP fully electric-no requirement for compressor air or hydraulics to actuate the take in cylinder
- · Became available in November of 2021
- · Includes inverter and remote control
- Stocked item

Prototype Development


Magnetic Wire Guide

- A custom wire guide developed to transition wire from the cutting unit to a plane parallel with the attachment to be cut.
- Keeps the wire as close as possible to the surface of the base material to provide a near-flush cut, without damage to the base material

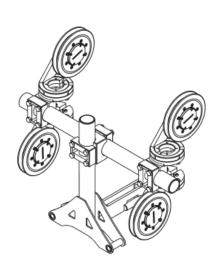
Design development after initial cutting

- Handles have been improved to move away from connections and rated to use for safety tie off
- Replaced machined (custom) shims with angled ball connection

Prototype Development

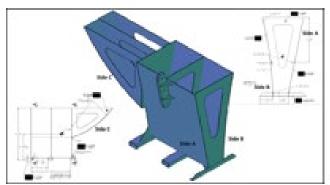
Separated into two units for optimizing placement and easier lifting

- Allows magnetic pulley guide to be placed away from the attachment
- Lessens impact of uneven surfaces caused by welding of back-side structure
- Reduces hard angle on diamond wire
- Moves magnetic base away from metal shavings from cutting process



Prototype Development

Magnetic base option added to Universal Transition
 Pulley for mounting to the deck without using welded studs



Testing

 Demonstration of Functional Requirements with various configurations and attachment sizes

																	L						_		P						_
							THE WAR								(MLN)	ndo Lift rapro	op Ledders for cattle spt	werr (dec)	alon.	from (decod)	intest		and quites lets	£ time	string rates	mpangre	rformence 2	rface gouge	monoral oblitty (no.	car carso acts arraige to atta	ry Out Option
Clar	des.		fw .	11-			ral Type		Teeli	i-al 5-:	.6	Allaskaral	2-1	-,	Ö	8 8	N O	ď :	3	ŏ	8 6		Ξ	đ	đ	Ĕ	<u> </u>	Ø	288	289	6.
Video	_	Ship			Tapel	Tapell	Tape III	Tape IV	A	P	c	Lassiiss jas	4,,,		Н	\top	+	\vdash	+	Н	\top	1	5					13 13		1414	ᆟ
aplica	dras	dras	dras	-	35T =	188T B	Paint Log	HET BL.A	ilesigk		C		alanz		\Box	#	\bot	\Box	\pm	\Box	\bot	al arlaş izəlrəsli	⇇				⇉	\pm	=	苹	口
	*			١.	x						×	6" from lap rdqr	Drak		*	*	*	*	*				×	×	×	х		× ×	х	x x	Ш
			×	z	×						×	araler of accessil bright		G1	,		*	*	*				×	x	х			××	x	x x	:
٠,,	*		*	,		x			×			E ⁻ from lapedge	Drak		*		*	*	*				x	×	х	х		x x	х	x x	\Box
	¥			ŀ		x				х		1/3 overall bright from lapedge		G4	¥		*	4	*	П			×	х	х			x x	х	x x	: 🗌
47.	*		*	2			х		х			6" from lapedge	Drak		*		*	¥	*	П	Τ		x	х	х			x x	х	x x	\Box
	4			٠			×			х		araler of accessil beight		G1	\		¥	*	*				×	х	х			x x	x	x x	
٠,,	4		4	,			х				х	ereler	Drak				*	*	*				x	х	х			x x	х	x x	١
	4			Ŀ				×	×			apper bezabela E [*] belau lapedge	Drak		¥		*	*	*				x	х	х	х	x	x x	x	x x	
17.	*		4	,				х		х		apper bezabela E [*] belau lap edge		G4	ď	*	*	4	*				x	х	х	х	х	x x	х	x x	: 🗌
		4		111											¥	\perp	4	1	4	\Box	+		\vdash				\dashv	+	\vdash	+	+
		-		112					\vdash	\vdash	\vdash				\vdash	+	1	-	+ -	↤	+		+	\vdash	Н	\vdash	\dashv	+	-	++	+
									_						ш	_	-	-	-	_	_		_	_	ш		_		-		—

Testing

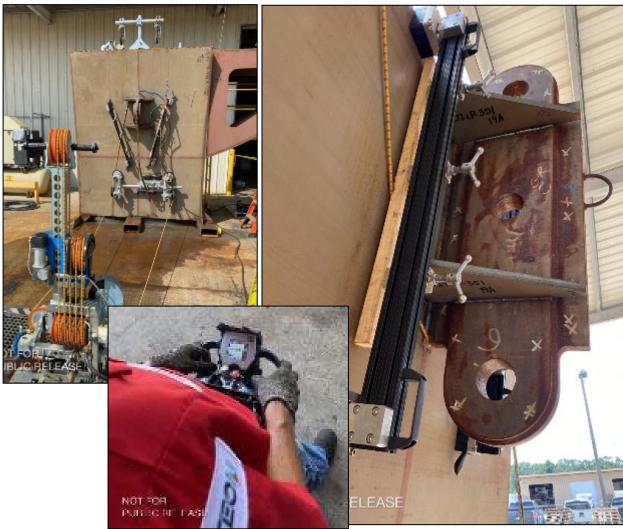
Testing



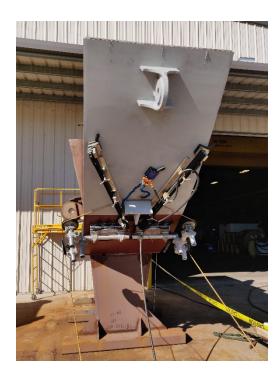
Lessons Learned

- Wire Guide System
- Improved design to interchangeable magnet and angle bar configuration

Lessons Learned



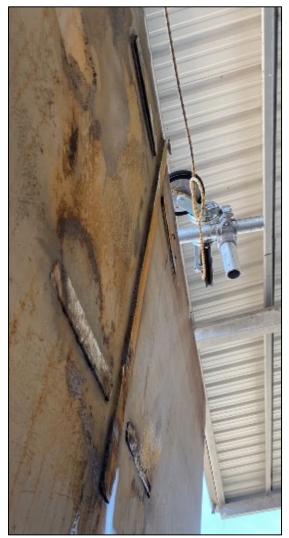
Lessons Learned



Initial testing at Claxton

Accomplishments

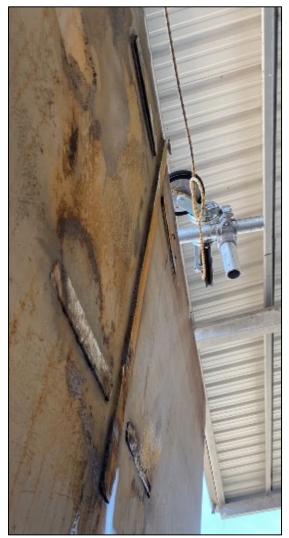
- Fabrication of testing mocks with representative structure
- Development of Prototype Pulley System



Improvements

Cut Performance

Improvements



Improvements

Cut Performance

Summary & Benefits

- New cutting method
- Reduce costs for engineered lifting attachments by 66% per year
- Reduce costs of rework due to hot work damage by 75% per year
- \$1.7M five year savings
- ROI = 0.91

Contact Information

Director Mark Snider (843) 760-3239

mark.snider@ati.org

Technical Director Jeremy Brougher (843) 760-3578

jeremy.brougher@ati.org

Program Admin Brooke Ellis (843) 760-3541

brooke.ellis@ati.org

https://cnm.ati.org/

Prepared under ONR contract N00014-16-D-4001 as part of the Navy ManTech Program

