Cobots in Ship Manufacturing, High Mobility Manufacturing Robot, Integration Opportunities

March, 2023

NSRP RA Project TIA #2020-303

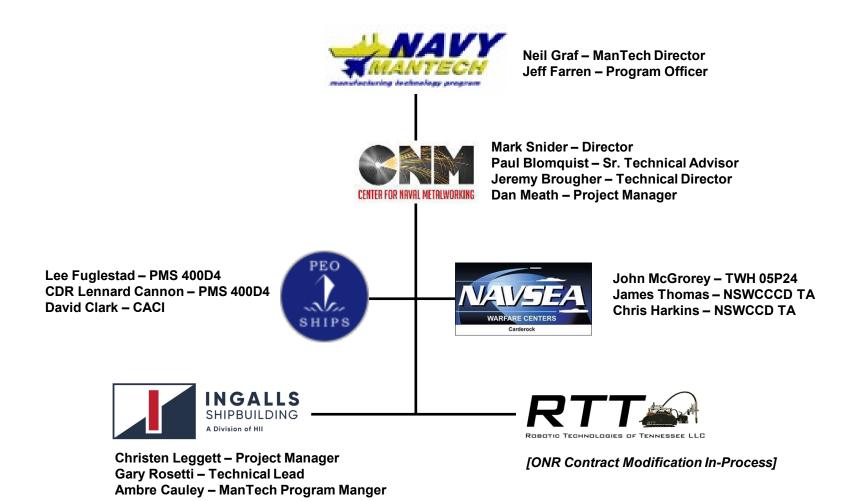
Stephen Canfield, RTT
Jim Hansen, EWI
Patrick Cahill, Cahill Consulting
Robotic Technologies of Tennessee

EWI

Vigor Shipyards

Cahill Consulting

Overview


- Robots / Cobots in manufacturing
- Multi-function shipbuilding robot Mantech project update
- Sample Applications
- Review the NSRP RA Project TIA #2020-303
- Technology transitions to Miller Copilot
- Future integration opportunities of cobots in ship manufacturing

Multi-Function Shipbuilding Robot

ManTech Project No. S2904
Center for Naval Metalworking (CNM)
Contract 2017-508, Task Order 007

Period of Performance: April 2021 – January 2025

Project Team

Issue Description

- Current welding processes for vertical and horizontal erection joints are performed either manually or using a mechanized system which uses a track for a welding tractor to ride on.
- Installing this track for a single weld seam becomes cumbersome with the use of multiple sections of track, subsequent measuring to ensure proper placement of track in relation to the weld seam, and the additional process of tacking the track in place.
- All of these tasks are performed using either scaffolding or man lifts, increasing manufacturing costs.

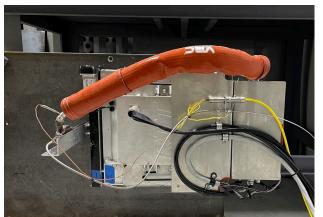
Project Objectives / Approach

- Develop a prototype for a trackless crawler with the capability to weld horizontal and vertical erection joints.
- Develop the foundation for the surface preparation, inter-pass cleaning and inspection of the weld joints.

The multi-function robot system will be developed using a phase based approach where each iterative phase builds upon the foundation of the previous phase(s):

- Phase 1 establish requirements for each of the desired processes and research the currently available technologies
- Phase 2 implement the automated robotic welding processes
- Phase 3 develop surface preparation capability
- Phase 4 develop capability of in-process and/or final inspection

This project only funds the initial two phases.


Project Goals

- Goal 1: Reduce labor hours required to erect scaffolding and track welding set up
 - Man-lifts and craft support may still be required for the initial set-up of the robotic system and the final inspection procedures. However, reduction of the required scaffolding will provide significant labor savings.
- Goal 2: Decrease labor hours needed to weld erection joints by 50%
 - While the weld parameters / weld speed is not expected to change, the "arc on-time" for the weld process will be increased.
- Goal 3: Decrease hours needed to rework and re-inspect welds by 50%
 - The increased weld quality provided by a mechanized welding process will result in reduction of rework and the resulting re-inspection.

Innovation and Impact

- Commercial off the shelf (COTS) solutions exist for trackless welding, vision systems, remote welding software, laser tracking, path planning software, and remote inspection methods. However each of these are currently stand-alone processes.
- This project will each of these capabilities into a single, stand-alone automated system.
- This project will also implement repeatable and predicable processes for each
 of the desired capabilities, resulting in increase efficiency and higher end
 product quality.

Cobot: A definition

- Cobot <u>Collaborative robot</u>
- Robot intended for direct human interaction with shared space or proximity (IFR)
 - Traditional robotics separate robots from human contact during operation (safety)
 - Cobots achieve safety through weight, materials, geometry, sensing, controls
- Recent development (1997 patent) stemming from GM robotics center and University research

Four Levels of Collaboration between worker and cobot (IFR)						
Coexistence	Work side by side (no protective barrier)					
Sequential Collaboration	Share the workspace					
Cooperation	Work on the same part, at the same time					
Responsive Collaboration	Cobot responds to worker					

Cobot companies - timeline

- Cobotics (late 1990's) Automotive assembly
- Kuka cobot 2004 (LBR series)
- Universal Robotics (2008)
- Rethink Robotics (2011) Baxter
- Yasakawa (Motoman, 2013)
- AUBO robotics (2014, Smokie Robotics)
- FANUC (2015) CR series
- ABB (2015) YuMi
- Welding Examples
 - Fabtech 2018 2 welding cobots
 - Fabtech 2023 20+?

Comparing robot specifications: Collaborative Vs. Traditional

UR10 Technical specifications

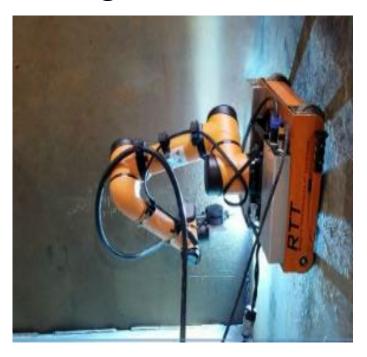
Item no. 110110

6-axis robot arm with a working radius of 1300 mm / 51.2 in

Weight:	28.9 kg / 63.7 lbs	
Payload:	10 kg / 22 lbs	
Reach:	1300 mm / 51.2 in	
Joint ranges:	+/- 360°	
Speed:	Base and Shoulder: 120°/s. Elbow, Wrist 1, Wrist 2, Wrist 3: 180°/s. Tool: Typical 1 m/s. / 39.4 in/s.	
Repeatability:	+/- 0.1 mm / +/- 0.0039 in (4 mils)	
Footprint:	Ø190 mm / 7.5 in	
Degrees of freedom:	6 rotating joints	
Control box size (WxHxD):	475 mm x 423 mm x 268 mm / 18.7 x 16.7 x 10.6 in	

• Similar payload and reach, 29 vs. 130kg arm mass

Cobot Theory, Standards and guidelines


- ISO 10218-1/2:2011 Safety Requirements for Industrial Robots
- ISO/TS 15066:2016 Robots and robotics devices – Collaborative robots
- Subject to Quasi-static and transient effects
- Bounds on mass, speed control, and torque sensing

- Operational impacts on cobot design
 - Weight/mass
 - Speed
 - Accuracy
 - Stiffness
 - Exterior shell

RTT- based cobot applications:

- HMMR (Cobot on mobile platform
- Portable cobot systems
- Integration with track/positioners

NSRP RA Project TIA #2020-303 Review

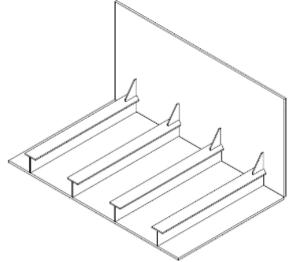
- Increase the range of opportunities for mechanized welding through a lightweight, portable (or mobile) robot
- 2) First, apply to general fillet weld types
 - 1) 2F (Horizontal)
 - 2) 3F (Vertical)
 - 3) 4F (Overhead)
- Second, apply to specific jobs (welds joining stiffeners to deckplate, bulkhead intersections)

Motivating problem:

Overview of Proposed System

- Operator places HMMR on stiffener and switches mag-locks
- 2) Robot scans and welds stiffener and gusset on either side
- 3) Operator releases mag-locks, slides HMMR to the next stiffener
- 4) Repeat

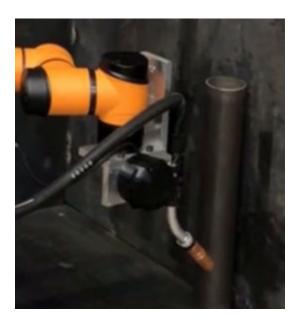
Develop Platform Hardware (HMMR-lite)

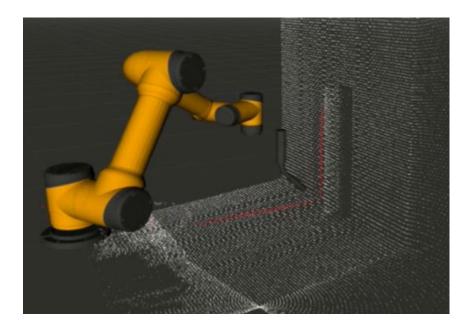

- Base: Magnetic switchable
- Arm: commercial cobot
- End-effector: Supports torch and user interface
- Algorithms: Control robot motion, path, and job planning
- System is man portable (approx. 50 lb)

Mobility Requirements

- Task: T-stiffeners with fillet welds at deckplates and bulkheads
- Task workspace: ~300 mm
 (12 in) sphere
- HMMR workspace: ~ 950 mm (37 in) sphere
- HMMR positioned on stiffener

Demonstration of HMMR Hardware




Algorithm and Controls Development

- Path planning is performed by the robot
- Robot maps the workspace
 - Develops high-level path guide
- Scans weld seams
 - Builds model of weld seam and develop accurate weld path
 - Integrates the weld schedules according job requirements
- Scanning tools
 - Lidar
 - Structured light vision

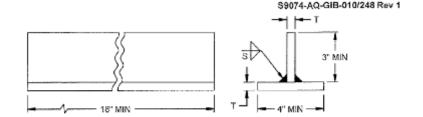
Scanning Tool — Lidar

- Scanning Lidar
 - Generate point cloud
 - Use to find key features
 - Detect objects

Development of Open/Closed Loop Welding

- Weld power source communication
 - HMMR controller communicates with power source and wire feeder through Miller's cobot adapter
 - Interface for cobot control of large range of Miller power supplies
 - Works with popular S-74 MPa wire feeder
 - Provides full control over voltage/wire speed and process settings
 - Path planning includes selecting proper weld schedule – pull from selected set of validated weld schedules

HMMR Prototype Ready for Testing on Selected Joints

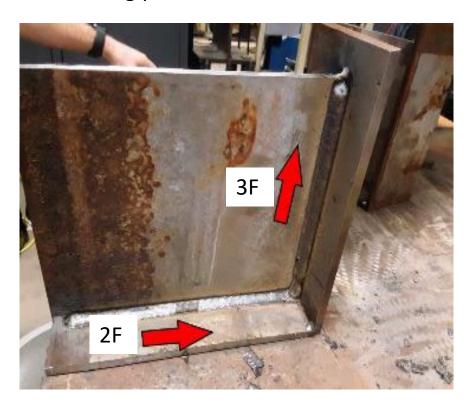

- HMMR arm with portable base attached to stiffener
- Control system configured with integrated welder control (Miller Invision 352 MPa shown here)

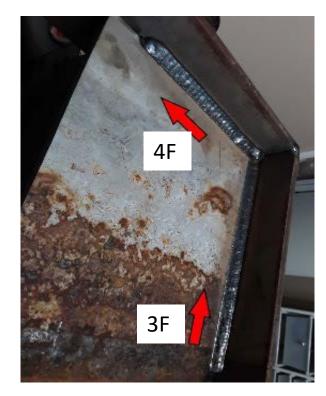
Overview of Welding Process Development and Evaluation

- Procedures were developed to meet requirements of Tech Pub 248 Rev. 1
- Base materials: 5/16 in and 3/8 in thick primer coated DH36 steel
- Wire: MIL-71T-1
- Shielding gas: 100% CO₂
- Gap tolerance: 0 to 1/16 in
- Minimum leg size: 1/4 in
- 2F, 3F, 4F procedures developed and evaluated

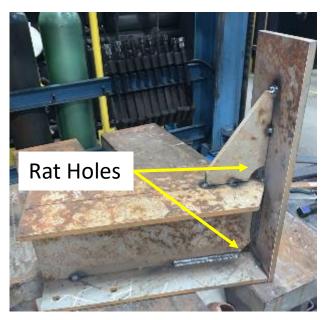
- T = MAXIMUM THICKNESS TO BE USED IN PRODUCTION OR 3/8 INCH, WHICHEVER IS THE LESSER.
- S = MAXIMUM SIZE SINGLE PASS FILLET TO BE USED IN PRODUCTION.

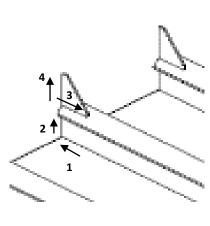
NOTES:


- Plating shall be ofther ordinary or higher strength steel, as specified in MIL-S-22698, which qualifies the procedure for use on these materials.
- Plating shall be primer-coated to maximize thickness that will be applied in production.
 Plate shall be welded in the horizontal position and shall qualify for all positions.
- Remove first side weld by gauging or mechanical means and fracture second side weld. Test assembly may be cut into
 shorter lengths after welding to facilitate fracturing for examination.

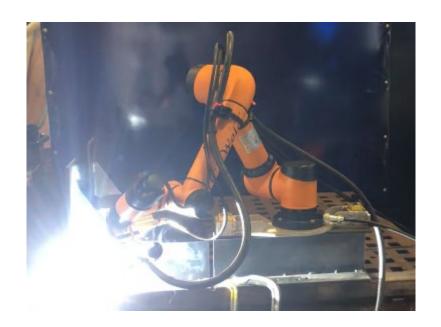

Figure 7-9. Procedure Qualification Test Assembly for Fillet Welding Over Primer-Coated Surfaces

Procedure Implementation


Step 1: General Fillets


 Develop procedures to create acceptable tie-in and weld profile between welding positions

Procedure Implementation: Welding on Bulkhead Mockups



- Welding on the bulkhead mockups requires development of wrap procedures
- Accessibility considerations prove challenging to complete full wraps with acceptable tie-in and weld profile

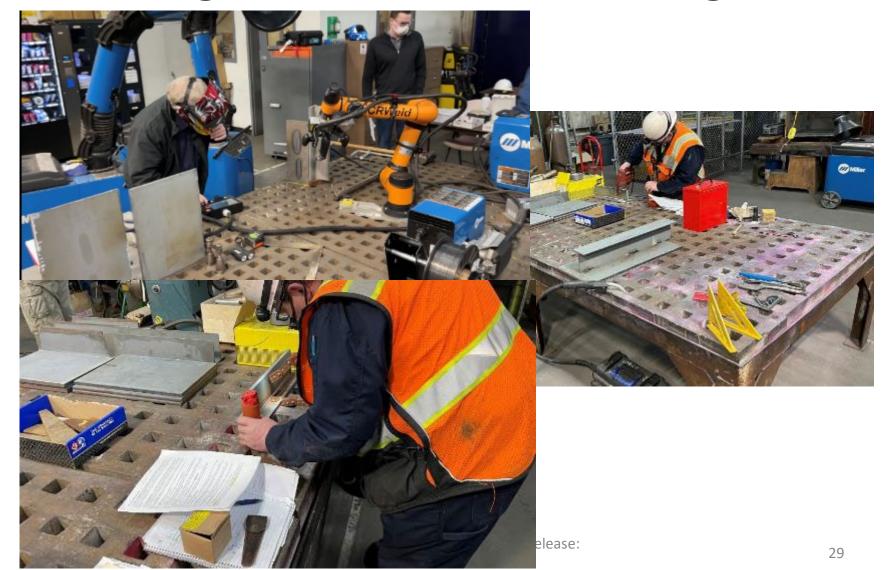
Testing

- Process development
- Qualification
- Time studies
- Reliability

Testing	Primary	Operation	Scan time**	Weld time**	Other** (hrs)
location	purpose	time* (hrs)	(hrs)	(hrs)	
RTT	Motion control development	75	19	37	19
EWI	Weld process development	20	3	4	13
Vigor	Process qualification, training, evaluation	16	2.4	5	8.6
Total		111	24.4	46	40.6

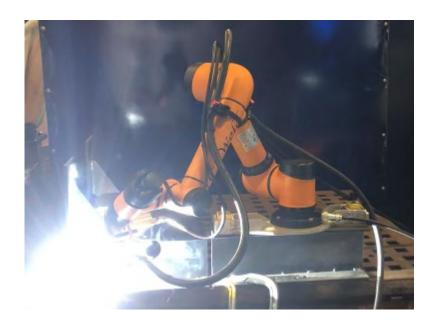
Testing at Vigor

- Spring, 2022
- Weld Qualifications
- Training
- Replicated systems


Qualification procedures

							Page 1 of	f 2
\	VIGO	R —		W.	PS# V	I 2F, 3F,	4F Positions	
· ·				tobotic A	Automati	c Flux Core	d Arc Welding (F	CAW
						100% Co	2	
Welding Procedu	ire Spec	ification	(WPS)		S1 to	o S1 Carb	on Steel	
Written By: Kenneth Joh	inson	Appro	oved By:					+
Revision No. 0	Date: 4	-Mar-22		Viç	gor Indust	rial Quality As	surance	
NAVSEA APPROVAL								
Substantiating PQR:	VI	Dated:		SUPSHI	P Puget	Sound :		
Substantiating PQR:	VI	Dated:		NAVSEA	A Approv	al:		
JOINTS								
Qualified within the limits of the joint	desian in MIL-ST	D-22.						_
		Mapping (SSI	M1.0)					_
Scanner: Gocator 2340								
BASE METAL						590	074-AQ-GIB-010/248 Rev 1	$\overline{}$
MATERIAL SPEC :	MIL-2269	98					1 1	-
TYPE OR GRADE :	ABS A3				<i>}</i> }	3 T	3° MIN	_
THICKNESS OF TEST COUP		1/2"				- :-		-
Diameter	N/A			- 1	18" MIN		IN	_
Coating:	NiPi Interplat	e 997				T = MAXIMUM THICKNES IN PRODUCTION OR	IS TO BE USED	
Method of Application:						IN PRODUCTION OR WHICHEVER IS THE S = MAXIMUM SIZE SING	LESSER. SLE PASS	
Airless spray, Brush, Convention	al Spray, Rolle	er				S = MAXIMUM SIZE SING FILLET TO BE USED I PRODUCTION.	,N	
FILLER METALS				PREP				
SPECIFICATION :	AWS A5.2	20				Cut, or Ground		
FILLER TYPE :	E71T1		CLEAN				adjacent base materia	
SIZE / BRAND OF FILLER :		ESAB		a mir	nimum of 4 i	nches shall be	free of oil and grease	
Clad/HF Thickness/Layers	N/A							
MATERIAL LOT # :	,1007							
SIZE / BRAND OF FILLER :			GAS				F. D. OF	
MATERIAL DATE :	2/28/202	2			Gas	Mixture	Flow Rate CF	н
MATERIAL LOT # :	MIL-71T-1-F	4VC	s	hielding	CO2	100% CO2	30-45 CFH	
WINTERWILL EST # .	IVIIE-7 111-1-1	110			\vdash			_
								_
TORCH, TUNGSTEN, &	GAS CUP		FLFC	TRICAL	CHAR	ACTERIS	TICS	
TUNGSTEN ELECTRODE S		N/A	CURRE	NT :		DC(EP)		_
TUNGSTEN ELECTRODE TY	PE:	N/A	POLAR	ITY :		Reverse		
ELECTRODE EXTENSI		N/A					er 350 Mpa or s	imils
TORCH TYPE :	NA NA	IN/A	WFS	(001 1 L	i . VIIIICI		a Plus or similar	IIIIIE
	5/8" I.D. & 3/4	4" I D		Values	2F	3-74 IVIF 8	4F	$\overline{}$
3.10 001 01 <u>2</u> L .	5,5 1.D. Q 5/-		/ totual	· araco		31		+
Automatic Torch Position:			Wire Ea	ed Speed	415	265	375	1
Nork Angle to Web: 2F: 40°,3F	. 15° 1E. 1E			eu Speeu Itage	29	25	27	+
Wire Feed Angle: 2F: 5° push,				Speed	14.1	6.1		+-
Welding Progression: 2F (Horiz				Opeeu	1~7.1	0.1	- ''-	1
TORCH TYPE	Loritary, OF (V	ciacai Opj, 4F	GAS CUP	SIZE	\vdash			+
Tergaskiss CA3 Robotic	Air Cooled N	MC Cup			o chall ha	5/8" to 3/4"	10	-
Weaving Parameter Weave A					e snan De	370 10 3/4	1.0.	+
Weave Frequency (Hz.): 2F: 4.			ell Time (sec.		4 Left: 0	4		-
vveave riequelicy (nz.). Zr. 4.	J, JF. Z.U, 41	. J.U DW	an rillie (Sec.	<i>j.</i> rxigiit. U	.→, Leit. U			

									Page 2 of 2
			VIGOR	2		***	ред х	T 2E 2E	4E Dogitions
	Weldir	ng Pro	cedure Sp	ecificati	on (WP	S)	rs# v	125, 35,	4F Positions
THI	CKNESS	RANGI	QUALIFIED	S9074-AQ	GIB-010/24	18 rev 1 Table	(7-6)		
Plate	Range:	Groove Jo	oint -	N/A		Fillet Jo	oint -	0.5" to Unl	imited
Pipe	Range:	Groove Jo	oint -	N/A		Pipe Fillet Jo	oint - N/A		
PRI	EHEAT A	ND INTI	ERPASS		G/	AS			
Prel	neat shall be	60°F mini	mum and Interpa	ss shall not e	exceed		Gas	Mixture	Flow Rate CFH
			s considered opt			Shielding	CO2	100% CO2	30-45
			nade prior to weld byrometers or other			Backing	N/A		
			re Indicating Cray			Dacking	IN/A		
Preh	eat: Ambier	nt PW	HT: N/A						
ELE	CTRICAL	CHARA	CTERISTICS						
	Current: DC (EP) Polarity: Reverse GMAW DC Pulse								
		265-415	Volt (Range):		current will y	any depending of	a fillor bron	d ereftenersen s	kill, joint design and position
		s specified	are recommendation	ilis Olliy. Actual	Current will v	ary depending of	Triller bran	u, cransperson s	Kill, Joliti design and position
	TES:								
1			Per NAVSEA Ted						
2		-							SHALL NOT be used.
3									e free of oil, grease, an
	,	•	•						re brush may be used
	with Caution not to smear the metal. The Stainless Wire Brush will have ONLY been used for CuNi. Carbide burring of the joint surface after cutting the joint has been found to be an effective means to remove smeared metal which trap								
	contaminants. Clean all weld passes prior to depositing the next.								
4	Pior to a	all welding	all weld areas sh	all be wiped o	clean with Is	opopanol 3. Po	3 II or eau	ivalent.	
			ack welds shall b						
Ŭ	TVOIG TOOTH		Veave Bead Meth					i jointi it op.	
			CTWD - Cup to v	•		to work distance			
6	1		Shall be IAW app				U/T		
7		nspection :					iny other s	ubsequent ins	pections or
-1	<u>""</u>	ispeciion.	Nondestructive 7				,	,	•
8	elding Regu	irements :	Welding shall be	e accomplishe	ed IAW MIL-	STD-1689A (Str	uctural), a	ind NAVSEA Te	ch Pub T9074-AR-GIB-
	J.G.I.g P.OQU		010/278 (Machin	nery, Pipe & Pr	ressure Ves	sels),			
			-						


No Distribution 28

Training/Qualification/Testing

Testing

Videos of operation

Complete scan and weld https://vimeo.com/528391072/17 1c0faace

Welding of gusset
https://vimeo.com/528392166/d
6e4eb581d

Cost-Benefit Analysis

- Sub 8 min process time with robot, 80% efficiency
- 12X increase in Operator through-put
- Speed, reduced stress, high arc-on time

Welding Efficiency and rates		Unit Costs	
Manual welder's efficiency (arc on time)*	6% ME	Manual Operator (Labor) Cost	\$60.00 MOC
Automation (HMMR) Efficiency**	50% RE	Robot-augmented operator cost	\$87.90 ROC=MOC+C*RC
HMMR Robots serviced by one operator	3 #R	Cost per unit of weld, Manual	\$133.33 CWM=MOC/UWM
Units of weld (Stiffener completed) per hour, Ma	0.45 UWM=ME*60min/hr	Cost per unit of weld, HMMR-augmented	\$7.81 CWR=ROC/UWR
Units of weld (Stiffener completed) per hour,		•	
Operator augmented with 1 HMMR	3.75 UWR=RE*1*60min/8m	in weld	
Units of weld (Stiffener completed) per hour,			
Operator augmented with 2 HMMRs	7.5 UWR=RE*2*60min/8m	in weld	
Units of weld (Stiffener completed) per hour,			
Operator augmented with 3 HMMRs	in weld Savings per unit of weld	\$125.52 S=CWM-CWR	
Robot Hourly Cost		Period Cost Savings	
Initial Robot Cost	\$50,000 RIC	Hours worked per shift years	1920 H
Initial Setup cost	\$18,000 SUC	Total Units of weld - per augmented op. per year	7200 TU=H*UWR/#R
Maintenanc cost over life a % of purch price	50% MC	Savings per augmented operator per year	\$ 903,744 SY=TU*SU
Life of Robot (hrs)	10000 LR	Total savings over implementation period	\$ 4,518,720 S=SY*R*Y
Robot Hourly cost	9.3 RC=(RIC*(1+MC)+SUC),	/LR	
Implementation period		ROI Calculations	
Robots implemented (#)	3 R	Proposal cost (Includes 1 robots)	\$ 500,000
Implementation period (yrs)	5 Y	Additional initial robot cost (2 robots)	\$ 136,000
		Total costs	\$ 636,000 T
		ROI (Total Savings/Total Costs for period)	710% S/T

^{*} Current weld task requires operator to work in a tight corner and in some cases weld or inspect with mirro

^{**} HMMR task documented operational speeds

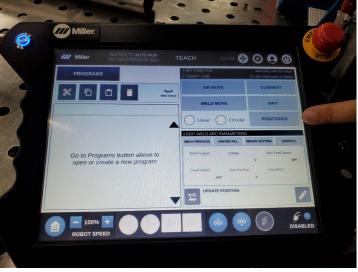
Current activity

- Transferring equipment to longer-term testing
- Support in-field testing and implementation
- Working with OEM to transfer technology through nationally recognized distributor

Miller Copilot™

 18 month collaboration to develop Miller's Copilot

- AccuGuide™
- IntelliSet™
- Motion planning
- Program interface
- Future Opportunities
 - Integration: Sensors
 - Integration: Positioners
 - Integration: Linear Rails
 - Portability


Distribution A. Approved for public release: distribution unlimited

Integrated Positioner (Miller-sourced CoPilot + Positioner)

Integrating Extended-reach system (rail/track based arms)

- Other integration actions:
 - Onboard sensing
 - Seam tracking
 - Touch sensing, through arc seam tracking

Summary

- Robots / Cobots in manufacturing
- Multi-function shipbuilding robot Mantech project update
- Sample Applications
- Review the NSRP RA Project TIA #2020-303
- Technology transitions to Miller Copilot
- Future integration opportunities of cobots in ship manufacturing

Questions

No Distribution 37