NSRP National Shipbuilding Research Program

NSRP Panel Project Evaluation of Splice-On Connectors and Termini for Shipboard Applications

NSRP All Panel Meeting Charleston, SC

March 28-30, 2023

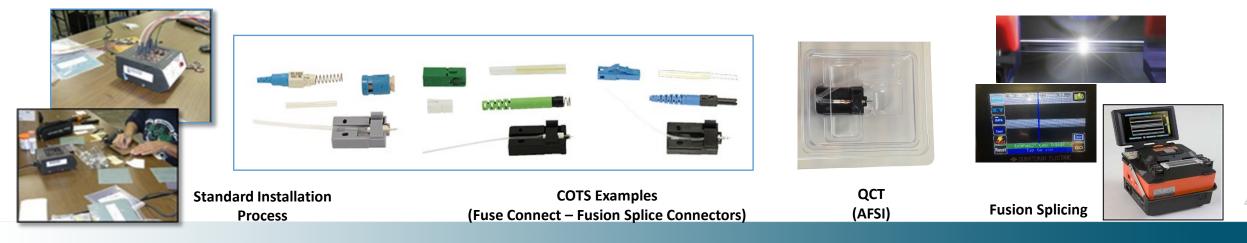
Project Team

Ingalls Shipbuilding (Lead) Newport News Shipbuilding Amphenol Fiber Systems International Naval Surface Warfare Center Dahlgren Division

Project Technical Representative (PTR) Walt Skalniak, Ashby Co NSRP Project Manager Nick Laney, ATI

Project Overview

<u>Opportunity:</u>


- Fiber optic connectors are typically installed shipboard during the construction process
 - Harsh environment not ideal for fiber optic connector quality.
- Splice-on connectors present an opportunity to enable improved performance and efficient installation

Project Goals:

- To evaluate splice-on fiber optic connectors for applications in the ship construction process
- To determine the feasibility of this connector option in U.S. Navy shipboard applications
 - Will include evaluation of impact to current construction processes, cost savings, and Navy qualification requirements

Splice-On Connectors Overview

- Splice-on connectors and Quick Connect Termini (QCT) are prefabricated connectors/fiber optic termini
- The connectors/termini are fabricated in a clean, factory environment
- The factory-polished termini are fusion spliced to shipboard cable using standard, Navy approved splicing processes

Project Task Summary

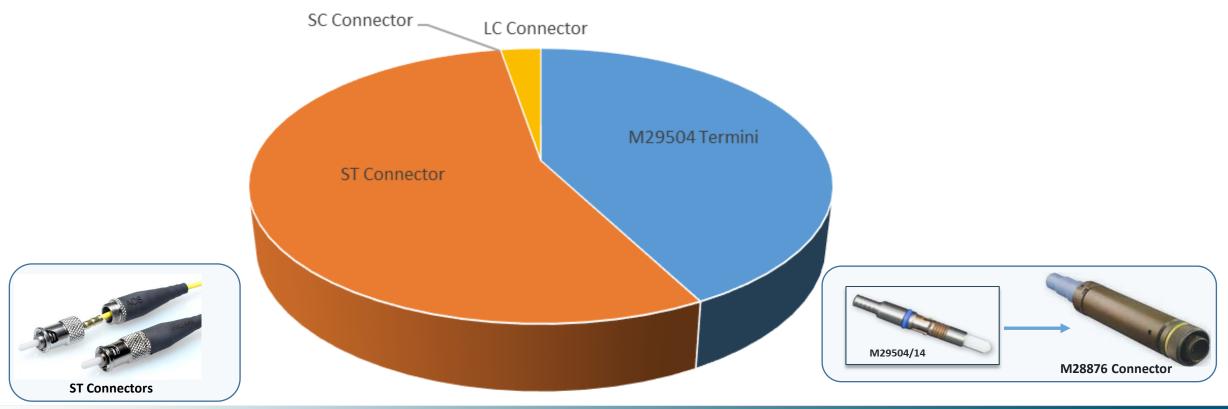
- 1. Requirements Review
- 2. Identify Fiber Optic Connectors for Ship Programs
- 3. Evaluate Feasibility for USN Applications
- 4. Develop Plan for Qualification and Transition
- 5. Final Report

Requirements Impacting Ship Installations

- IPT conducted review of applicable requirements
- Impacts to fiber optic systems and hardware selection identified:
 - System Design
 - Component Selection
 - Installation & Testing

CATEGORY	RQMT DOC	DESCRIPTION	SLANT SHEETS
System Design	Ship Spec Section 408	Ship Specification for Fiber Optic Cable Plant	
	MIL-STD-2052	Fiber Optic System Design	
Installation & Testing	MIL-STD-2042	Fiber Optic Cable Topology Installation Standard Methods for Naval Ships	Part 1 – Cables Part 2 – Equipment Part 3 – Cable Penetrations Part 4 – Cableways Part 5 – Connectors & Interconnections Part 6 – Tests Part 7 – Pier side Connectivity

Fiber Optic Component Specifications


CATEGORY	RQMT DOC	DESCRIPTION	SLANT SHEETS
Connectors	MIL-PRF-28876	Heavy Duty Connectors	
	MIL-PRF-64266	Next Generation Heavy Duty Connectors	/1 /2 /3 /8 /9 /10 /11 /18
	MIL-C-83522	Light Duty Connectors	/16 (ST, bayonet coupling)/17 (ST, bulkhead panel mount)/18 (ST, PC mounting)
Termini	MIL-PRF-29504	Removable Fiber Optic Connector Termini	/3 /14 /15
	NAVSEA 7648710	Quick Connecting Termini	
Splices	MIL-PRF-24623	General specifications for fiber optic cable splice.	/4 /5 /6
Fiber	MIL-PRF-49291	General specifications for optical fiber	/6 (Туре I) /7 (Туре II)
Cable	MIL-PRF-85045	General specifications for fiber optic cable	/13, /14, /15, /16, /17, /18, /19, /20, /21, /22, /23, /24, /25, /26, /27, /28, /29
Connectors (COTS)	C	Commercial Item Description Connectors, Fiber Optic, Single or Multiple Fiber epoxy polish, fusion splice on, mechanical splice on)	/1 (LC) /2 (SC) /3 (ST)

Approach

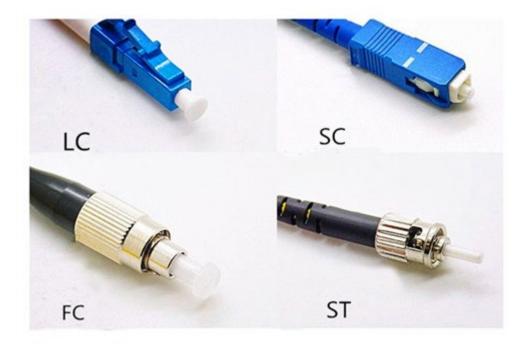
- Study evaluating the following:
 - COTS Splice On Connectors (Single Channel)
 - QCTs- Splice On Termini for Multi-Pin Circular (M28876) Connectors
- Gaps to be evaluated
 - Availability of commercial options
 - Development needs for M29504 termini option
 - Splice machine requirements and availability

Connector Types – USN Applications

- Survey conducted to identify connector types and usage
- Preliminary data includes DDG, LHA, CVN ships
 - Others in process
- Primary usage includes M29504 termini and ST connectors

Connector Types – USN Applications (Single Channel)

- Single channel connectors include MIL and COTS options
 - ST widely used
 - Others in very small quantities



ST Connectors

CONNECTOR TYPE	MIL STD/COTS	MIL-STD/CID	PN
ST	MIL-STD	MIL-C-83522	M83522/16DNX M83522/16-DNY
ST	COTS	A-A-59940	MSTC2100 MSTC1101 MSTC2100 MSTC2101 MSTC1110
sc	COTS	A-A-59940	5503948-1 6588714-1
LC	COTS	A-A-59940	XPLC2-MM

*COTS connectors are only permitted for use within shock isolated enclosures/equipment.

Connector Types – Single Channel (General Overview of COTS Options)

- ST (Straight Tip)
- LC (Lucent Connector)
- SC (Subscriber Connector)
- FC (Ferrule Connector)

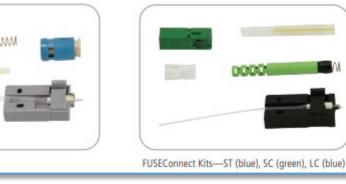
Specifications for Fiber Optic Connectors			
Connector Type	Singlemode (9/125) Insertion Loss (dB)	Multimode Insertion Loss (dB)	Return Loss (dB)
ST Connector	≤0.5	≤0.5	≥40
LC Connector	≤0.25	N/A	≥40
SC Connector	≤0.25	≤0.5	≥50
FC Connector	≤0.25	≤0.5	≥50

COTS Splice-On Connectors

- Over 100 commercially available options identified
- Technical evaluation being conducted
 - Sample Hardware
 - Technical Documentation
- Some considerations in evaluation process:
 - Connector Type
 - Fiber Type
 - Cable Compatibility
 - Splice Machine Compatibility
 - Durability
 - Assembly Process

COTS Splice-On Connectors (Some Options...)

- AFL
- Belden
- Corning
- Clearfield
- Diamond
- FiberFox
- Fibernet
- FIS
- Infinium
- OFS/Fitel
- Panduit
- Siemon
- Sumitomo
- UCL/Ilsintech


Fusion Crocodile

Belden FX Fusion

Connector Types – USN Application (Circular)

CONNECTOR TYPE	MIL STD/COTS	MIL-STD/CID	PN
Multi-Pin, Circular	MIL-STD	MIL-DTL-28876	M28876/1B1S1 M28876/11B1S1 M28876/6B1S1 M28876/1C1S1 M28876/11C1S1 M28876/6C1S1

QCT Apparatus Status

- Existing QCT system uses Fujikura 70S
 - Last updated 2014
 - Currently in EOL phase by Fujikura
 - Spares etc. available through existing stock
- No current support for existing termini assembly and packaging
 - AFL original partner
 - No current support/manufacturer for existing design
- Current design/process still documented and available for use

QCT Apparatus Status

Large footprint

12 Inches

Need moisture resistant packaging

QCT Current Issues

- 70S support in EOL stage (existing inventory only)
 - Currently out of production by Fujikura
 - 70S+ in use at current facilities
- Need to find new supplier of pre-made splice assemblies
- Better fiber storage and protection (moisture)
- Practically limited to 8 fiber connectors
- Approximately 4" of clearance (straight) required from connector for protective shell
- Minimum of ${}^{15}/{}_{32}$ " (12mm) of fiber needed for splice operation
 - Main driver for 4" splice protector requirement
- Workspace
 - Need a few feet of level, linear clearance for proper splice operation
 - Need approximately 2' x 3' equipment setup area

QCT Current Issues

Several inches of splice clearance needed

QCT Improvement Recommendations

- Upgrade to newer splicer with smaller footprint and less required work area
 - Need to be able to get into tight/awkward workspaces
 - Down select to a couple vendors
 - Verify they are willing to work with us long term
 - Select unit with smaller splice dimensions (clearance, strip length, etc.)
- Improved packaging
 - Need to keep moisture out for better shelf life
- Develop shorter termination/splice length

Next Steps...

- Continue evaluation of COTS options
- Continue development of QCT improvements
- Down-select options
- Evaluate feasibility for shipboard applications
- Technology transition planning

Project Team POCs

	ORGANIZATION	POC	CONTACT
Project Lead/Prime	Ingalls Shipbuilding	Jason Farmer	(228) 935-7573 Jason.Farmer@HII-Ingalls.com
Team Members	Amphenol Military and Aerospace Operations (AMAO)	Mark Joseph	(607) 422-2872 mjoseph@amphenol-aao.com
	Newport News Shipbuilding (NNS)	David Ellis	(757) 688-6086 david.ellis@hii-nns.com
Participating Government Stakeholder	NSWC-Dahlgren Division (NSWCDD)	Chris Good	(540) 653-0627 christopher.a.good8.civ@us.navy.mil
NSRP Project Technical Representative (PTR)	NSRP Electrical Technologies Panel	Walter Skalniak	(757) 309-6344 <u>Walter.Skalniak@panduit.com</u>
NSRP Program Manager	ATI	Nick Laney	(843)760-3485 nicholas.laney@ati.org

Questions

