

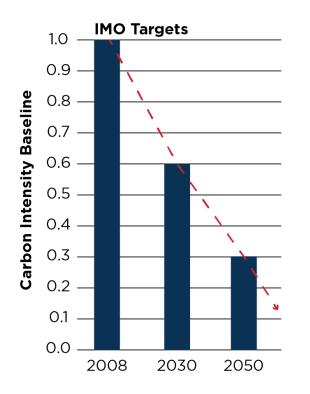
Pathways to Sustainability through Alternative Marine Fuels NSRP Meeting

Gareth Burton VP Technology

© 2019 American Bureau of Shipping. All rights reserved

Agenda

- Drivers for Alternative Fuels
- Fuel Mix Outlook
- Alternative Fuel Options
 - Hydrogen
 - Ammonia
 - Methanol
 - Biofuels

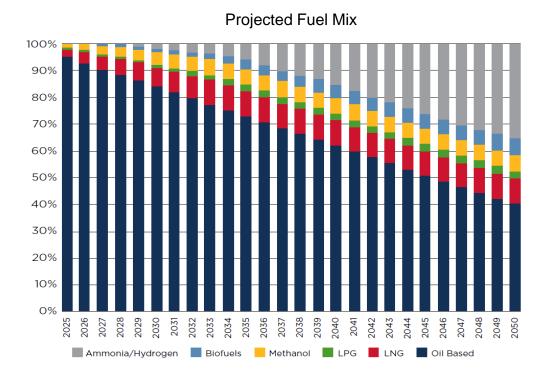

United Nations: Sustainable Development

- 2015: All member states of United Nations adopted the Agenda for Sustainable Development
 - 17 Sustainable Development Goals (SDG's)
 - Objective: shared blueprint for the planet

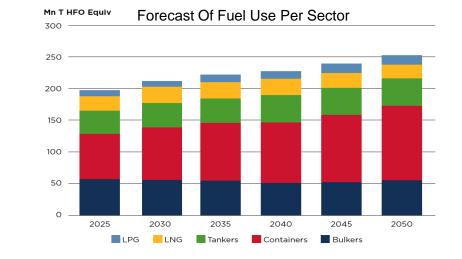
International Maritime Organization: GHG Strategy

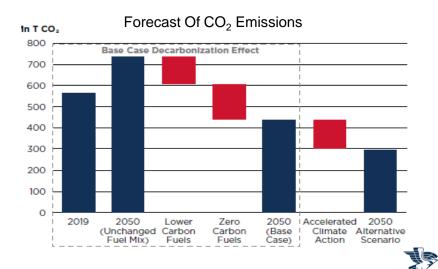
- 2018: IMO adopted Initial Strategy setting ambitious goals for reduction of Greenhouse Gases
 - Reduce carbon intensity of 40% by 2030
 - Reduce carbon intensity of 70% by 2050
 - Reduce GHG emissions 50% by 2050

Nov 2020 (MEPC 75)	Agreed on combination of EEXI and CII EEXI framework and 4th GHG study approved
June 2021 (MEPC 76)	Develop technical guidelines for EEXI and CII Agree on CII metrics, baseline, reduction targets
(MEPC 77)	Initiation of work for adjustments on Initial IMO Strategy, based on DCS data
Summer 2021	Data for 2020 to be reported to IMO
(MEPC 78)	Phase 3: Decision step Secretariat report summarizing the 2020 data
Summer 2022	Data for 2021 to be reported to IMO
(MEPC 80)	Adoption of Revised IMO Strategy (short-, mid- and long-term measures)


EEXI: Energy Efficiency Existing Ship Index

CII: Carbon Intensity Indicator


DCS: Data Collection System



Decarbonization Outlook

- Fuel mix projected to 2050:
 - 40% oil-based fuels
 - 35% ammonia, hydrogen
 - 25% LNG, LPG, methanol, biofuels

Decarbonization Solutions

Alternative Fuels and Energy	• LNG	_	 Hydrogen Ammonia 	
Sources	LPG/Ethane Biofuels (Bog	Methanol (Regional)		• Nuclear
	Biofuels (Reg	lional)	 Biofuels (Global) 	
Technology Improvements	Air Lubrication	Improved Hull & ESD Op	otions • Wind/S	Solar
	• Hybrid	Fuel Cells	Electric Propulsio	n
	• Cold Ironi	ing	Carbon Capture (Shore/SI	hip)
Operational Efficiency	Weather Routing	New Charter	Arrangements	
	 Speed Opt 	imization • Just	in Time Shipping	
<u></u>	 Vessel Performance Reporting 	Smart Vessel/ Improved Reliability	 Fleet Interactive Performance/ Optimization 	/
		Pathway to 20	50	

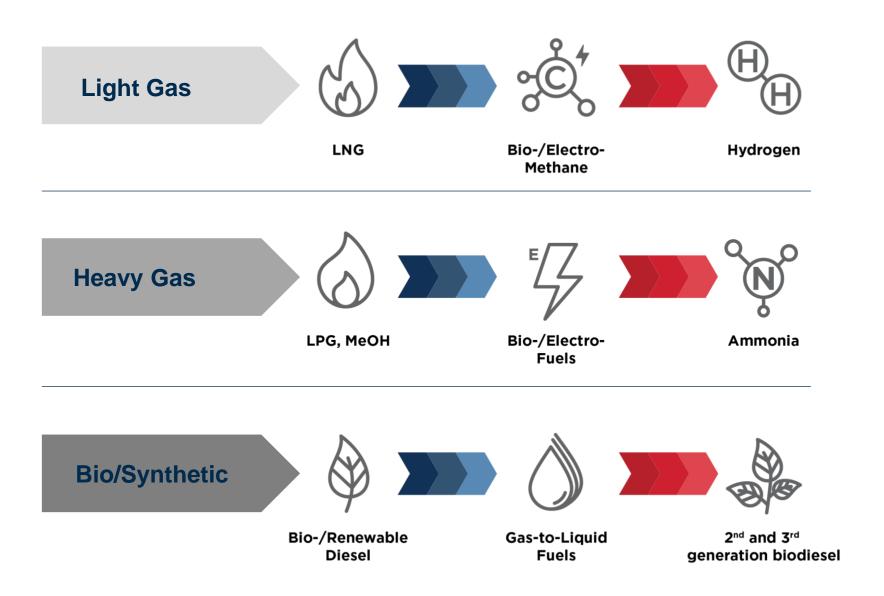
2050

Alternative Fuel Sources

Fuel Type	Infrastructure	Security of Supply	Energy Density	CO2	SOx	Safety
Heavy Fuel Oil				\bigcirc	\bigcirc	
Marine Diesel				\bigcirc		
LNG						
LPG						
Methanol (from Methane)						
Methanol (from biomass)						
Ammonia (from methane)						
Ammonia (from renewable)						
Hydrogen (from methane)						
Hydrogen (from renewable)	\bigcirc					
Biofuels						

Notes:

Source: ABS/MSI study


• Infrastructure refers to existing bunkering infrastructure or facilities that can be adapted to support bunkering (e.g. import/export terminals)

• Security of supply refers to the availability of sufficient global production to meet significant demand from the marine sector for bunkers

- Energy density refers to the volumetric energy content of the fuel and on-board storage requirements
- CO₂ and SOx refers to impact on emissions

• Safety refers to handling, storage and consumption risks

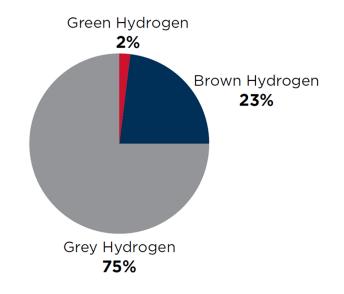
Three Fuel Pathways to the Future

Hydrogen Characteristics

- Very small molecule, composed of two atoms
- Colorless, odorless, tasteless, **non-toxic gas**
- Low density, **naturally buoyant**
- Wide flammability range
- Liquefies at -253°C (-423.4°F)
- Can be used in a fuel cell: outputs are heat, water, and electric power
- High energy content by mass; low energy content by volume
 - compressed hydrogen requires 8 x volume of marine gas oil
 - liquefied hydrogen required 4 x volume of marine gas oil

Chemical Composition	H ₂
H-H	
LHV (MJ/kg)	120
Energy Density (MJ/L)	8.5
Heat of Vaporization (kJ/kg)	1371
Autoignition Temperature (°C)	585
Liquid Density (kg/m ³)	71
Cetane Number	0
Octane Number	>130
Boiling Point (°C)	-253
Stoichiometric Air/Fuel Ratio	34:1
Adiabatic Flame Temperature at 1 Bar (°C)	2127

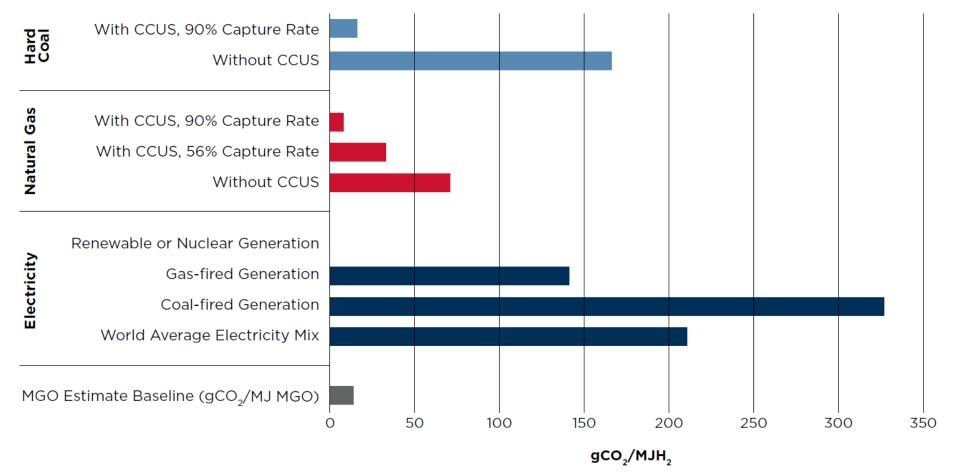
Hydrogen production: fossil fuels or water


Brown Hydrogen: From processing of coal

Grey Hydrogen: From processing of natural gas

Blue Hydrogen: From processing of fossil fuels using Carbon Capture, Utilization and Storage

Green Hydrogen: From renewable energy sources, typically through electrolysis

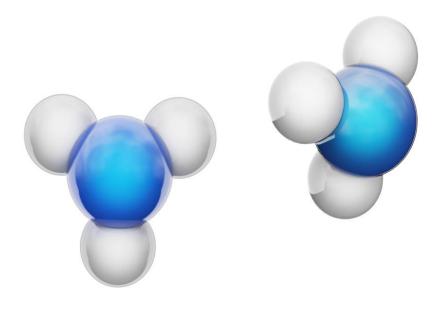

Orange Hydrogen: A blend of Blue, Grey, Brown or Green hydrogen (e.g., 50/50% Grey-Green)

10 | Alternative Fuels

Hydrogen Production Emissions

CCUS: Carbon Capture Utilization & Storage

Hydrogen Key Considerations


- Wide flammability range: special considerations should be taken to minimize the fire safety risks
- Performing a risk assessment is necessary for approvals
- Experience using hydrogen as marine fuel is growing
- Hydrogen produced from renewable sources can provide a route to zero-emission vessels
- Supporting a hydrogen economy can make it more available as a marine fuel

Ammonia Characteristics

- A colorless inorganic compound
- Carbon- and sulphur-free and gives a clean combustion without generation of CO₂ or SO_X
- Liquefied by compression to approximately 8 bar
- **Commonly stored at ~17 bar**, to keep in liquid phase if ambient temperature increases
- While relatively low volumetric energy density, is higher than hydrogen; reduces tank size

© Orange Deer studio/Shutterstock

Ammonia Concerns

Toxicity/strong odor

- Restricting venting to ppm levels rather than the lower explosive limit (LEL)
- Location of vent outlets
- In case of Type A tank vent from secondary barrier to be specially considered
- Leaks/release in confined spaces

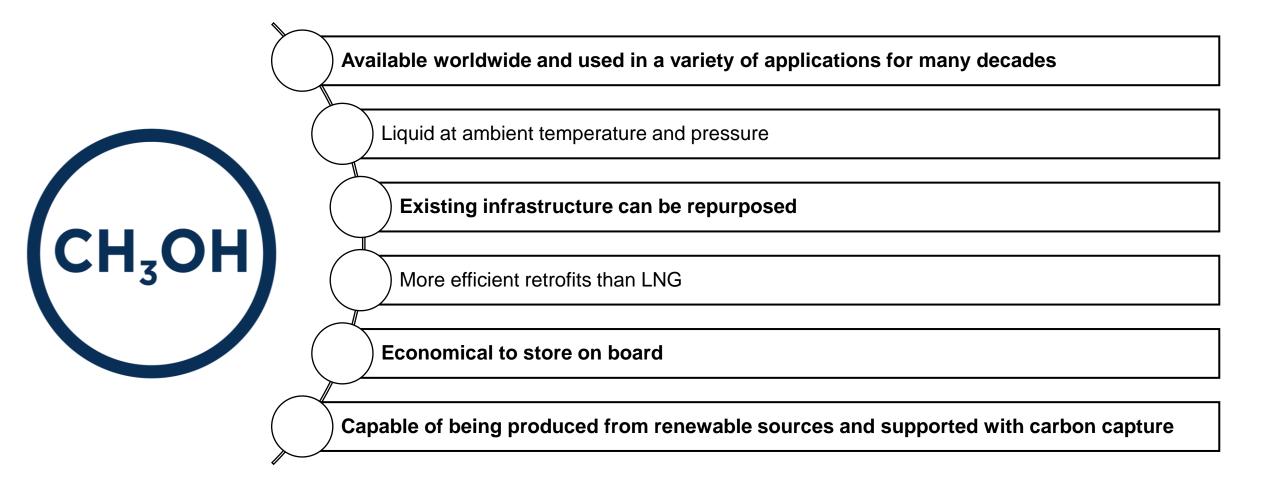
Gas freeing operations

- At quay with Nitrogen from shoreside
- Nitrogen Oxide emissions, potent GHG, presently unregulated
 - Prototype engine testing required to understand the issue

- Corrosive nature → use of some metals to be avoided in FGSS
- Gas freeing of fuel gas supply system (FGSS) and engine prior maintenance

Ammonia Key Considerations

- Class and regulatory framework in place
- **Risk assessment** is part of the approval process
- Experience and scope of dual-fuel technologies growing
- Ammonia produced using renewable energy can provide route to zero and low carbon fuels



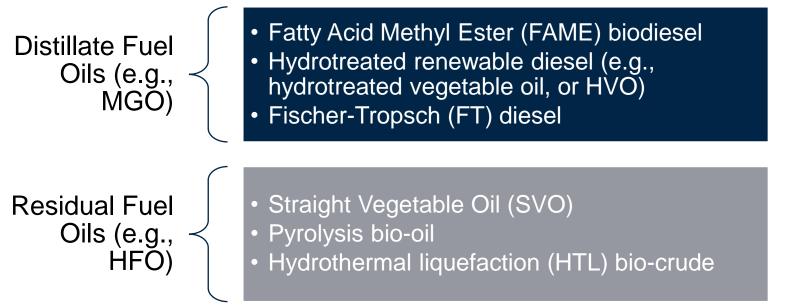
Methanol Characteristics

- A clear liquid compound
- · Low flashpoint and is corrosive to certain materials
- **Toxic and poisonous** to the central nervous system may cause blindness, coma and death if ingested
- Vapor is heavier than air
- At high vapor concentrations, methanol can also cause asphyxiation
- Methanol flames are particularly hazardous, they burn at low temperatures with a flame that is nearly invisible in daylight with no smoke

METHANOL PROPERTY	VALUE
Energy density (MJ/L)	15.7
Heat of vaporization (kJ/kg)	1098
Autoignition temperature (°C)	450
Liquid density (kg/m ³)	798
Adiabatic flame temperature at 1 bar (°C)	1980
Molecular weight (g/mol)	32.04
Melting point (°C)	-97.8
Boiling point at 1 bar (°C)	65
Critical temperature (°C)	239.4
Critical pressure (bar)	80.48
Flammable range in dry air (%)	6-36.5
Cetane number	< 5
Octane number	109
Flash point (°C)	12
Heavy Fuel Oil (HFO) equivalent volume	2.54

Methanol Advantages

Methanol Key Considerations


- Existing infrastructure
- Carbon neutral potential
- Class and regulatory framework for applications are in place
- **Risk assessment** is part of the approval process
- Local applications require flag and local authority approval
- Flames are particularly challenging

Biofuel Characteristics

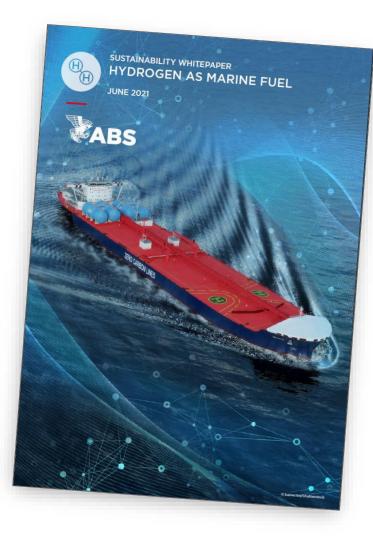
 "Biofuels" describe any liquid or gaseous fuel derived from biomass or bio-waste

Drop-in biofuel benefits:

- "Drop-In" characteristics
- Non-toxic and biodegradable
- Reduced emissions profile
- Compatible with existing bunkering infrastructure
- Detergent properties

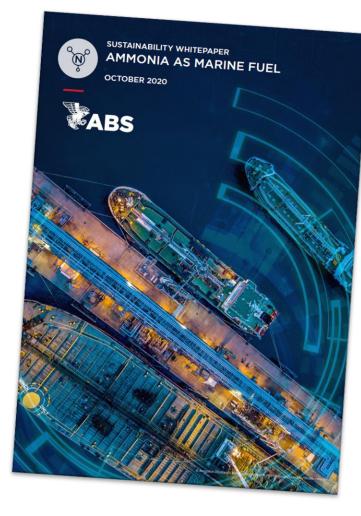
Biofuels Key Considerations

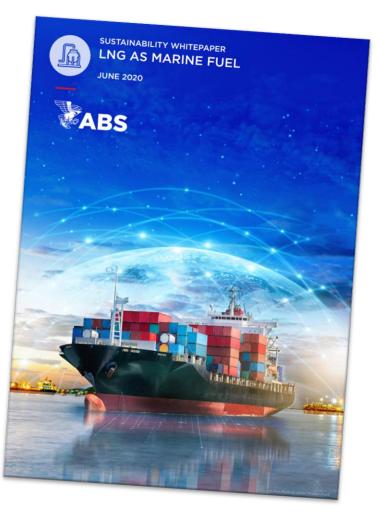
- Biofuels covers a wide variety of biomass-derived fuels
- Drop-in biofuel blends can improve emissions profile for carbon dioxide, sulfur oxides, and particulate matter
- Biofuels can use existing fuel infrastructure
- Biofuel produced from renewable sources can provide a route to net-zero carbon vessels



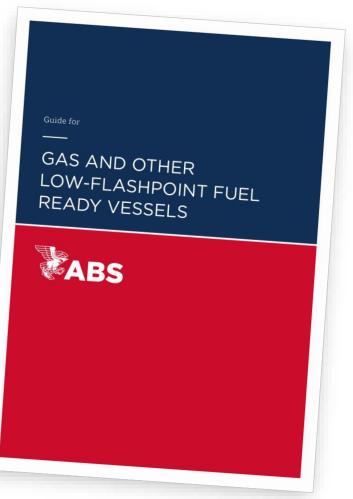
© ghenadie/Shutterstock

ABS Resources






ABS Resources



ABS Resources

ABS	
GUIDE FOR FUEL CELL POWER SYSTEMS FOR MARINE AND OFFSHORE APPLICATIONS NOVEMBER 2019	
American Bureau of Shipping Incorporated by Act of Legislature of the State of New York 1862	
© 2019 American Bureau of Shipping. All rights reserved. 1701 City Plaza Drive Spring, TX 7738 USA	

https://ww2.eagle.org

THANK YOU

..........

.....

....

www.eagle.org

© 2019 American Bureau of Shipping. All rights reserved