Additive Manufacturing (AM) at EWI

Why is EWI interested in AM?

675 feet of weld (Audi R8)

1-inch L-PBF Cube

5 miles of weld

3,400 feet of weld

Additive manufacturing is materials joining over and over again!

AM Process Development

. 3

Expertise Across the Value Chain

QUALITY CNTL.

Competency:

- In-process monitoring
- Surface characterization
- Eddy current
- Phased-array UT
- X-ray CT
- Dimensional metrology

Competency:

- Weldability
- Heat treatment

MATERIALS

- Material processing
- Powder characterization
- Powder recycling
- Powder spheriodization
- Functionally gradient components
- Microstructure

AM DESIGN

Competency:

- Build layout, orientation, and supports
- Identification of AM prospect parts
- Design optimization for AM
- Multi-axis toolpath generation
- AM process simulation

Competency:

- Material process parameter development
- Application-based process selection
- Large scale AM
- Surface finish optimization
- Scan strategies
- Material property database generation

EWI's Approach to AM Applications

Seven Broad Modalities of AM (for now)

AM technologies at EWI

Build Envelope: 250×250×325 mm

Material Capability:

- Alloy steels (4140, 17-4PH)
- Ni alloys (Haynes 282, Inco 625, Inco 718)
- Cobalt Alloys (CoCrMo, Haynes 188)
- Aluminum (AlSi10Mg, A205)
- Titanium (Ti64)
- Stainless steels (316, 420, 2205)
- Refractory metals (Zr, W, Mo)

Capabilities:

- Production Relevant 400W laser system
- EOSTATE MeltPool & Exposur

LB-PBF: EOS M290

- Build Envelope: 125×125×50 mm
 Material Capability:
 - All metal powder

Capabilities:

- Fully programmable 700W laser system
- Customizable optics table and build chamber for sensor implementation
- Open access to laser path planning, recoater motor
 & scanner galvanometer I/O
- Preheated platform (up to 500°C)

LB-PBF: Open Architecture System

- Build Envelope: 250×250×380 mm
- Material Capability:
 - Stainless steel (316L)
 - Ni alloys (Inco 718)
 - Ti64, TiAl
 - Magnesium
 - CoCrMo
- Capabilities:
 - Production Relevant Electron Beam System
 - High Temp Vacuum Chamber for processing solidification crack prone alloys

EB-PBF: Arcam A2X

7

AM technologies at EWI

- Build Envelope:
 - 160*65*65 mm
- Materials:
 - Metals
 - ceramics
 - glass
 - Sand castings

Binder Jetting: ExOne Innovent+

- Build Envelope:
 5'*5'*7'
- Materials:
 - Metals
- Capabilities:
 - 5-axis capabilities

Laser Powder DED: RPMi 557XR

Build Envelope:
 - 70"*47"*63"

- Materials:
 - Metals
- Capabilities:
 - multi-axis capabilities
 - Closed loop control

E-Beam Wire DED: Sciaky EBAM 110

AM technologies at EWI

Build Envelope:

- 6'x6'x3' with hybrid CNC

Materials:

- Metals incl. Al, Cu, SS, Zr, Ta, Ni
- Capabilities
 - Solid state, room temperature
 - Enables multi-material-system, embedded electronics

Ultrasonic AM: Fabrisonic Sheet Lamination

- Build Envelope:
 - Open cells with many options and configurations available
- Materials:
 - Any weldable metal wire
- Capabilities
 - Energy source equipment readily available
 - Core process is well understood
 - Feedstock Availability
 - High Deposition speeds

Robotic Laser and Arc DED AM: Multiple Systems

Check out our "Introduction to Metal AM" Content

Available on-demand

Download Today!

AM Parameter & Process Development

AM Project Examples

and and the second and the second second second

New Material for New Application

Objective:

• Enable custom, additively manufactured, medical implant

Solution:

- Developed process parameters on Arcam for high thermal conductivity material
- Built test parts
- Validated quality met customer specification

Outcome:

- Customer performing ex-situ testing
- Customer setting plan for clinical trials

Process development for complex geometries

Objective:

 Evaluate the feasibility of conventionally built part through large scale AM

Solution:

- Redesigned part to make it AM friendly
- Determined parameters to successfully build part
- Developed a roadmap to take part to production

Outcome:

Prototype part built

MOOG

Ti64 demo build of a secondary payload adapter

Video laser powder DED

Application of robotic Arc based DED

Objective:

 Evaluate the feasibility GMA-DED to build 308 stainless components

Solution:

- Part built with 3/8" extra width on each side to allow for edge variation
- 0.5" added to ends

Outcome:

- Billet/casting required to machine ≥ 8" x 8" x 42"
- Process results in an 85% reduction in material required
- "Production" build time:
 - Arc-on time: 15 hours
 - Inter-layer cleaning time: 2 hours

Roughness Optimization for AM Product Improvement

Objective:

• Improve performance of in-development additively manufactured component by optimizing roughness

Solution:

- Identified metrics and measurement solutions for optimization and quality control
- Optimized surface roughness on critical surfaces to improve fatigue life and fluid flow

Outcome:

 Customer qualifying parts manufactured using new parameters

Example: Comparison of Methods to Measure Roughness

N. Senin et al. Meas. Sci. Technol. 28 (2017) 095003

In-process monitoring for AM

- In Process Sensing for L-PBF
 - Developed and built a sensor test bed
 - Developing in process monitoring baselines for LPF
 - Investigate integration issues on EOS M280
- In Process Sensing for L-DED

21

- Leading in process sensing task for L-DED repair applications
- Developing methods to quantify powder flow rate in process.

Global Thermal Imaging Pyrometer

Local Thermal Imaging Pyrometer

America Makes

Layer 1

Optimizing Powder for AM/Recyclability

Objective:

Process non spherical powder into powder that can be sold for AM

Solution:

- Sieve into batches appropriate for AM process.
- Select plasma parameters on Tek-15 for:
 - High spherical yield for flowability
 - Removal of powder porosity
 - Reduced O, N, and H content
- Provide cost evaluation on solution.

Outcome:

- Customer investing in processing equipment.
- Extending research efforts into AM process parameter development.

Image: 250x magnification - Before and After plasma processing. (Particle size: 75-105µm)

AM at EWI

EWI advances AM at three scales:

- 1. Confidential Customer Projects: EWI confidentially solves individual companies metal AM challenges.
- 2. Consortia: Since 2009 EWI's Additive Manufacturing Consortia (AMC) has provided:
 - Pre-competitive R&D
 - Quarterly meetings to network and stay in touch with the latest and greatest
- **3. Standards:** Founding partner of the ASTM AM Center of Excellence which performs and streamlines the research needed for standards development.

Additive Manufacturing Consortium

and the the second day and entering the state take

Additive Manufacturing Consortium

Mission: Accelerate and advance the manufacturing readiness of additive manufacturing technologies

- Goals:
 - Platform for *collaboration* across global industry, academia and government entities.
 - Execute group sponsored projects focused on addressing *pre-competitive* AM challenges
 - *Partner* on government funding opportunities
 - Forum for discussion/shaping AM roadmaps

AMC Project Portfolio

Total current project portfolio is:

- +\$4.5M in past project work
- Over \$2M cash/in-kind per year of project work
- Currently 5 -8 projects/year

Phase 3 – Continuation of evaluating new AM technologies

• Continuing researching new AM technologies, obtaining samples for testing and surveys on the technologies

Assessment of new AM technologies - Hybrid

 Adopting the survey and part from new AM technologies project to cover hybrid systems (ie: additive & subtractive in same system)

Investigation into multi-laser systems

 Completing fatigue on Ti-64 samples from last year's project and duplicating last year's project for AlSi10Mg material build from various quad laser systems (EOS, SLM, Renishaw)

- Materials Testing in AM Does your coupon size, shape & surface condition matter?
 - Studying the effect of coupon size & shape on properties. Determining optimum coupon sizes

- Deeper Dive into LPBF Process restarts
 - Study of what is really happening at microstructure level when a process restarts and determining effects of restarts.

- Continuing researching new AM technologies, obtaining samples for testing and surveys on the technologies
- Phase 4 Material Characterization & Testing for high strength aluminum alloys (7075)
 - Evaluating effect of adding Silicon to AL7075 and comparing to commercial powders from Elementum3D and HRL
- Investigation into multi-laser systems
 - Evaluating performance of a Ti-64 build from various quad laser systems (EOS, SLM, Renishaw)
- Phase 3 Evaluation of NDE techniques
 - Continuing study of NDE techniques of using ultrasound and PCRT to detect defects

- Factors affecting AS built surfaces (vertical, upskin, downskin)
 - Study of effect of surface angle on as built surfaces for various layer thicknesses
- How to qualify machine performance across various manufacturers
 - Evaluating how to qualify machine performance, specifically looking at airflow and laser power but also looking at accuracy
- Phase 6 Continuation of IN625/IN718 Effect of thickness on microstructure
 - Studying of effect of thickness on microstructure

- Phase II: Evaluation of Post Process Techniques for AM
 - Processing a part using 8 post process techniques and comparing results. This year looking at the effect of post processing on fatigue results

Phase III: In-Process Monitoring

- Evaluating all of the commercial available in-process monitoring systems for L-PBF and comparing their results.
- Phase V: Continuing Further Testing on Current Projects IN 625 and IN 718 and Relating Microstructure to AM Properties – Fatigue & Creep
 - Studying the fatigue and creep resistance of AM printed parts

Desktop Metal	SPEEBI	🕨 🏌 XACT METAL
MELD	Markforged	FORMALLOY

- Evaluation of available powder measurement techniques to determine what system works best for specific types of powder
- Assessment of new AM metal AM technologies
 - Reviewing the "new" metal AM technologies and then comparing the properties of parts printed using those technologies

- Feature wise Parameter development for L-PBF
 - Looking at how parameters should be varied for specific types of geometries (ie: bridges or thin walls)
- Phase II: Evaluation of NDE techniques for complex AM parts
 - Determining the best NDE techniques to analyze a complex AM part

ASTM AM Center of Excellence

and the the provide a substrate substrate the set

.

AM standards advancement is not happening fast enough to keep pace with rapid AM technology development.

Current ad hoc approach results in:

Standards gaps and duplication

Inconsistent standards R&D across industries and geographies

No dedicated workforce to drive R&D for standards Lack of global acceptance of standards

ASTM AM CoE Partners

UNIVERSITY

.

Facilitator of R&D, standards development, and enabling qualification & certification Build industry consortia and work with them to identify and advance standards

In addition to R&D, Develop education and training resources and tools

Provide expertise in conducting R&D for standards in the aerospace and aviation fields **Global perspective o**n conducting R&D for standards for AM

How it works

THANK YOU

Contact Information: Mark Barfoot Director, AM Programs <u>mbarfoot@ewi.org</u> 716-710-5597