Validate a Testing Protocol to Establish the Maximum Heat Input for Welding S-1 Series Carbon Steels with Toughness Requirements

Team: LeTourneau University¹ | Newport News Shipbuilding²

Contact: 1richardbaumer@letu.edu; 2Greg.Pike@hii-nns.com

Problem Statement

• S-1 Series carbon steels with minimum toughness requirements are limited to maximum heat input used in qualification for Navy shipbuilding, leading to excessive procedure qualifications, inconsistency between shipyards, and lower productivity.

Ideal Situation

Solution/Approach

- Develop a physical simulative test method that can be used to determine maximum heat input limits in S-1 Series grouped materials
- **Task 1**: Build database of 8 welds: thin/thick plates (12.7, 50.8 mm); low/high heat input (~50 kJ/in , ~100 kJ/in) and bounding alloys (HSLA-65, DH-36). Measure heat affected zone (HAZ) toughness, microstructure, thermal cycle.
- **Task 2:** Develop physical simulation protocol for CVN test blanks that reproduces Task 1 toughness/HAZ thermal cycle relationships for both alloys.

Experiment Matrix

	Thin:	0.5″	Thick: 2.0"		
Low HI: 50 kJ/in	HSLA 65	DH-36	HSLA 65	DH-36	
High HI: 100 kJ/in	HSLA 65	DH-36	HSLA 65	DH-36	

Closed-Loop Validation

Result $#1 - Production \frac{1}{2}$ " plate welds completed (4 of 8)

- Task 1: Build database of 8 welds
 - <u>Thin</u>/thick plates (12.7, 50.8 mm); low/high heat input (~50 kJ/in , ~100 kJ/in) and bounding alloys (HSLA-65, DH-36).
 - Measure heat affected zone (HAZ) toughness, microstructure, <u>thermal cycle</u>.

HAZ Thermal Cycles

Prototype used TCs installed in HAZ side-wall. No way to calibrate TCs and concerned about impact on heat flow

Production welds: Surface TC measurements and calibration of FEA heat flow model per AWS A9.5 [1].

Prototype TC Measurement

Weld Cross Section w/ TC (200714_NSRP_T_E9-16in_M-2.5_TC2.5)

1. Weld with surface TCs [1]

Surface Calibration

2. FEA Validation: FZ Macro, Surface Gradient/Transient Response

Production TC Measurement Method (1/2")

Mid-plane Prediction

[1] "Guide for Verification and Validation in Computation Weld Mechanics," American Welding Society Standard A9.5, American Welding Society, Doral FL, 2013.

Joint Design and weld procedure summary

T=0.5 in; SAW-T, 125 kJ/in

T=0.5 in; GMAW-S, 60-70 kJ/in

Process	Consumable	Voltage [V]	Current [A]	WFS [in/min]	Travel Speed (in/min)	Heat Input (kJ/in)
SAW-T	F7A8-EM12K-H8, 1/8" [1]	Lead: 29.4 Trail: 29.4	850 ~790	175	25	125
GMAW-S	Ar-O ₂ 98-2; ER70S-3, 0.045" [2]	Root: 24 Fill: 28 Cap: 28	230 250 240		8 6.7 6.7	41.4 63 60.4

T(t): 12 channels, with grid to measure gradient, transient, and travel speed [3]

[1] Lincoln LINCOLNWELD[®] WTX flux and L-61[®] 1/8" diameter wire.

[2] Lincoln SuperArc L-50[®], Q1 Lot 15791962.

[3] "Guide for Verification and Validation in Computation Weld Mechanics," American Welding Society Standard A9.5, American Welding Society, Doral FL, 2013.

HSLA-65, ½" Plate: 125 kJ/in (SAW)

Lincoln LINCOLNWELD[®] WTX flux and L-61[®] 1/8" diameter wire.
Lincoln SuperArc L-50[®], Q1 Lot 15791962.

Process	Consumable	Voltage [V]	Current [A]	WFS [in/min]	Travel Speed (in/min)	Heat Input (kJ/in)
SAW-T	F7A8-EM12K-H8, 1/8" [1]	Lead: 29.4 Trail: 29.4	850 ~790	175	25	125

DH-36, ½" Plate: 125 kJ/in (SAW)

AA

[1] Lincoln LINCOLNWELD[®] WTX flux and L-61[®] 1/8" diameter wire.
[2] Lincoln SuperArc L-50[®], Q1 Lot 15791962.

F	Process	Consumable	Voltage [V]	Current [A]	WFS [in/min]	Travel Speed (in/min)	Heat Input (kJ/in)
	SAW-T	F7A8-EM12K-H8, 1/8" [1]	Lead: 29.4 Trail: 29.4	850 ~790	175	25	125

HSLA-65, ½" Plate: 60 kJ/in (GMAW-S)

[1] Lincoln LINCOLNWELD[®] WTX flux and L-61[®] 1/8" diameter wire. [2] Lincoln SuperArc L-50[®], Q1 Lot 15791962.

60.4

Thermal Cycles, All TCs

DH-36, 1/2" Plate: 60 kJ/in (GMAW-S)

*Weld interrupted by tip failure. The torch was cooled, the tip was replaced, and the weld resumed.

Process	Consumable	Voltage [V]	Current [A]	WFS [in/min]	Travel Speed (in/min)	Heat Input (kJ/in)
		Root: 24	230		8	41.4
GMAW-S	$Ar-O_2$ 98-2; ER/US-3,	Fill: 28	250		6.7	63
	0.045 [2]	Cap: 28	240		6.7	60.4

[1] Lincoln LINCOLNWELD[®] WTX flux and L-61[®] 1/8" diameter wire.
[2] Lincoln SuperArc L-50[®], Q1 Lot 15791962.

Result #2 – Preliminary FEA Model Developed

- **Task 1**: Build database of 8 welds
 - <u>Thin</u>/thick plates (12.7, 50.8 mm); low/<u>high heat input</u> (~50 kJ/in , ~100 kJ/in) and bounding alloys (HSLA-65, DH-36).
 - Measure heat affected zone (HAZ) toughness, microstructure, <u>thermal cycle</u>.

SAW-T FEA Model: Preliminary Results

- Two Goldak [1], double ellipsoidal heat sources used in Simufact Welding FEA code to model the singlepass, high heat input weld.
- Optimized heat source agrees well with FZ geometry

[1] Goldak et al. A New Finite Element Model for Welding Heat Sources, Metall. Trans. B 15 (1984) 299-305.

Result #3 – Prototyped simulative HAZ test

Simulated HAZ Procedure: Process Control

• **Result:** Developed test parameters to reproducibly run slow cooling rate condition ($T_p=1350 \circ C$; $\Delta t_{8/5}=60s$). 5 consecutive trials successfully completed.

Average of Five Trials

Peak Temperature (°C)	Δt _{8/5} (s)	800-500 °C Cooling Rate (°C/s)
1351.1 ± 0.2	60.4 ± 0.1	4.7 ± 0.0

Figure 1: Gleeble 1500 thermomechanical simulator with oversized (11 x 11 mm) CVN blank

Figure 2: Representative thermal cycle to produce simulated CGHAZ in CVN blank. ($T_p = 1317$ °C; $\Delta t_{8/5} = 9.1 s$)

Simulated HAZ vs Weld: CGHAZ in DH-36

 DH-36: FEA *informed* thermal cycle for single-pass SAW (125 kJ/in). Good agreement.

		Hard	ness	Toughness	
		[HV, 500	g, 15 s]	CVN,	ft-lbs
		AVG	STD	AVG	STD
Weld	210206_K_ W08_6	206.5	8.5	24.7	15.0
Gleeble	210219_К0 3-01	198.9	5.8	21.3	11.4

Simulated HAZ vs Weld: CGHAZ in HSLA-65

ŝ

15

Microhardness, HV (500 g,

 HSLA-65: FEA *informed* thermal cycle for single-pass SAW (125 kJ/in). *Refinement needed in FEA/Physical Simulation.*

		Hard	ness	Toughness	
		[HV, 500	g, 15 s]	CVN, ft-lbs	
		AVG	STD	AVG	STD
Wold	210203_H	205.2	Г 1	95.8	46.2
vveid	W08_5	205.5	5.1	(73.7)	(13.5)
Gleeble	210219_K0 3-01	190.1	28.2	19.3	6.4
*CVN testing at -40 °C			*Not	e: [74,90	, <mark>163</mark> ,57]

225 Weld GBL dt85 51s H06-01 220 GBL dt85 75.6s 215 H07-01 GBL dt85 90s H05-02 210 205 - H02-01 200 195 H09-01 H08-01 H04-01 190 H03-01 185 180 1050 1100 1150 1200 1250 1300 1350 1400

Peak Temperature, °C

Slide 16 of 21/Data Category B

Summary: Prototyped weld/test procedures

Progress to Date

- Created 4 reference welds for database: low/high heat input (60 & 125 kJ/in) for HSLA-65 and DH-36 in 0.5 in plate.
- **Prototyped FEA weld mechanics simulations.** Validation is ongoing.

• Demonstrated closed-loop simulative HAZ test:

- Prototyped first physical simulations with thermal cycle informed by FEA
- Demonstrated closed-loop validation protocol with direct toughness/ microstructure comparison of simulated HAZ to real weld
- Achieved quantitative agreement in DH-36 (125 kJ/in, single pass SAW).
- Validation is ongoing in HSLA-65.

Project Benefits and Long-term Vision

<u>Coupled numerical/physical</u> <u>simulative test method</u>

<u>Finite Element Analysis</u>

Identify maximum heat input limit in S-1 Steels

Material	Max Heat Input (worst case)
New Materials	

Project Benefits and Long-term Vision

<u>Coupled numerical/physical</u> <u>simulative test method</u>

Benefits:

- **Reduced variation** through reproducible thermal cycles.
- **Systematic**: Relate weld thermal cycle to toughness for representative combinations of material thickness, welding heat input, and number of weld passes.
- **Streamlined PQR development** in S-1 series carbon steels with toughness requirements

Next Steps

- Validate FEA weld mechanics model: 1/2" thick plate (HSLA 65 and DH-36) :
 - $\circ\,$ Finish validation of single pass SAW FEA model
 - Implement realistic multi-pass GMAW FEA model
- **Execute four welding experiments**: 2" thick alloy plate (HSLA 65 and DH-36) :
 - Produce four production welds (two alloys; two heat inputs) and measure thermal cycle during welds.
 - Measure weld HAZ properties (toughness, microhardness, and qualitative microscopy)
 - o Build computational weld mechanics model for 2" weldments
- Reproduce weld experiment data with simulative HAZ test
 - Continue developing Gleeble simulation protocol that reproduces HAZ weld properties (toughness, microhardness, and qualitative microscopy)

Thanks & Acknowledgments

• LETU Team

 Kaleb Gabbert & Taylor Johnson (Graduate); Sophie Hill, Colton Shambaugh, Brandon Griffith, and Elias Eaton

• Newport News Shipbuilding:

 \circ Greg Pike

• FEA

Fernando Okigami & Jeff Robertson (Simufact Welding)

• Material Sourcing

Jonathan Roberts (Ingalls)

• Useful discussions

- Lee O'Connell (GDEB)
- o Matthew Sinfield and Daniel Bechetti (NAVSEA, Carderock Division)
- Dr. Dana Medlin and Dr. Ezequiel Pessoa (LETU)

Questions?

Email: <u>nsrp@ati.org</u> Email: <u>RichardBaumer@letu.edu</u>

Backup Slides

Backup #1 – Thermocouple Calibration

Result #1: Thermocouple Validation

- 12 thermocouple channels
- TC channels validated with Gleeble: ramp at 350 °C/s to 1355 °C; controlled cooling with $\Delta t_{8/5} = 27.6$ s. Error quantified in different ranges
- Average of 3.4% error at peak temperature and 0.7% error over 800-500 °C
- Developed checks to identify unreliable TC response

Gleeble TC

Figure 1: Gleeble TC verified at Cu Melting (1085 °C) **Figure 2**: Gleeble TC validation experiment with ramp heating/cooling

