Survey of Surface Preparation and Coatings Automation Panel Briefing

Final Project Presentation – March 25, 2021 J. Peter Ault P.E. – Elzly Technology

Approved for public release; distribution is unlimited. Category B Data – Government Purpose Rights.

Survey of Surface Preparation and Coatings Automation

PROJECT TECHNICAL REPRESENTATIVE

• Arcino Quiero, Jr., HII-NNS

INDUSTRY INVOLVEMENT

- BAE Systems JSR Stephen Cogswell
- GD-BIW Robert Cloutier
- HII-Ingalls Shipbuilding Conlan Hsu

NAVY INVOLVEMENT

• None (officially)

Survey of Surface Preparation and Coatings Automation

<u>SCOPE</u>

- Establish the current state of surface preparation and coatings automation in shipyards
- Identify the current state of the art in two areas:
 - Surface preparation and painting automation in other industries
 - Use of robotics and automation in shipbuilding (all trades)
- Perform a gap analysis to identify paths forward for automating surface preparation and coating activities in shipbuilding
- Identify promising technologies for shipyard demonstration on production scale and lay out a path forward for NSRP, perhaps through an RA project

Major Activities

- Workshop
 - Fall Panel Meeting (SEP2019)
- Field Visits
 - Allstream UHP Stingray Robotic Hydroblasting System
 - JH Fletcher/ARS Cobra Robotic Grit Blaster (2 locations)
 - Titan Robotics
 - PPG automotive applications lab
 - Manufacturing USA Advanced Robotics for Manufacturing (ARM)
 - Boston Dynamics (virtual)
- Industry Outreach and Research

Workshop

- Brainstorming Session
- Panel Discussion

Proven Technologies

Blastman Robotic Blasting Automating In-house blasting process Blast up to 2,000 sqft per hour

 A robot can blast with 2 x ¾* nozzles 10X your blasting production

· Repetitive and consistent results 3-8 Axis units available

• Q & A

State of SPC Automation

- Attached solutions being implemented and optimized on flat surfaces (e.g., hulls and decks)
- Rail/gantry solutions being implemented and optimized in early stages of production (production lines and shop applications); concepts being developed for use in late stage construction
- Crawling systems are being developed for various industry uses; their use in late stage construction would be transformative for the industry

Shipyard Demonstration Allstream UHP Stingray Robotic Hydroblasting System

• Demonstrated improved productivity vs current system

Shipyard Demonstrations JH Fletcher/ARS Cobra Robotic Grit Blaster

- First exterior hull demonstration generated "lessons learned"
- Second exterior hull demonstration (different yard/contractor) was quite successful
 - Good production rate
 - Reduced impact on other activities

Other Industry Solutions Titan Robotics

- Obstacle avoidance system
- Geometrical challenges for mobility system in drydock

Other Industry Solutions Boston Dynamics

- No existing edge detection/avoidance
- Connectivity limitations
- Payload limitations

Other Industry Solutions Apellix

- Drone Technology
- Visual Inspection
- DFT and Wall Thickness
- Washing and paint application capability in development

Other Industry Solutions Blast One

- Abrasive Blasting
 - VertiDrive Crawler
 - Blastman robotic system

Key Observations

- Current Uses
 - Simple surface preparation and coatings tasks applied to flat surfaces, simple shapes and small parts
 - The most prominent robotic activity in shipyards is generally confined to early stages of construction
 - Other industries having the advantage of simpler shapes or wellsuited production lines
- Developmental
 - Expanded sensing and mobility, allowing for increased autonomy and obstacle negotiation

Gap Analysis

- Common to Many Industries
 - Cost
 - Culture
 - Commitment of management
 - Supporting Infrastructure (e.g., IT systems, workforce)
 - Undeveloped business cases
- Shipyard Unique
 - Inconsistent and complex design
 - Interaction between ship design and manufacturing technology
 - Integrated nature of multiple activities at each stage of construction

Robotic Design Factors

SPC Activity Design Factors

Activity	Grit/Hydro Blasting	Vacuuming	Painting	Inspecting
Payload/ End Effector	Blast nozzle, grit/ water supply hose (1-2 inches), grit/water in hose	Suction hose	Spray gun nozzle, paint, hose, IR sensor, solenoid valve	Camera, sensors (e.g., thickness, color or roughness gages)
Forces	Weight of hose and blast arm (if there is one), resist force of grit/water coming out of nozzle (80-120 psi/4000-10000 psi), weight of robot (for climbing), magnetic force (for climbing)	Vacuum force (-5 to -8 psig), weight of robot (if climbing), magnetic force (if climbing)	Spray gun, weight of paint arm, weight of robot (for climbing), magnetic force (for climbing), weight of paint/hose	Weight of robot (for climbing), magnetic force (for climbing), weight of camera arm/sensors
Environ- ment	Dusty, sparks, dark, tight spaces, weather, toxic waste (paint, oxides), possibly no large, flat surfaces (issues for vacuum blasting)	Dusty, tight spaces	Complicated geometry, toxic or flammable vapors, tight spaces, weather	Dark, tight spaces, moving camera arm around obstructions, sensor access to surfaces, possible dusty or explosive environment
Sensors	Accelerometer, gyroscope, proximity sensors	Accelerometer, gyroscope, proximity sensors	Accelerometer, gyroscope, proximity sensors	Accelerometer, gyroscope, proximity sensors
Ingress Rating	IP-64	IP-54	IP-54; intrinsically safe (explosion)	IP-54
Extra Systems Needed	Compressor, collection tube (if collecting waste), power for compressor	Return tube, filtration system for hazardous waste or liquids, power for vacuum motor, collection containers	Compressor, power for compressor, QC system (monitor plaint application rate or thickness)	None

Industry Path Forward

- Incrementally automate existing, stand-alone processes
 - Prep and paint lines for plates and small parts
 - Robotics for large, flat areas
 - Automated QA and QC processes
- Re-visit proven technologies when shipyard processes are being re-engineered
 - Drop-in solutions are unlikely to fit existing processes
- High Investment, High Payoff Ideas
 - Automation of Tank Preservation
 - Ship designs that are more conducive to automation (e.g., repetitive or robot-accessible designs)
 - Automation-friendly materials (e.g., coating materials which can be applied using electrostatic equipment)

Thank You to our Commercial Resources!

- Advanced Recycling Systems
- Advanced Robotics for Manufacturing (ARM)
- Aerobotix
- AllStream Services and Rental
- Apellix Aerial Robotic Systems
- Blast One International
- Boston Dynamics
- Boston Engineering
- Champion Painting
- Chariot Robotics
- Clemco Industries Corporation

- Confined Space Robotics
- Equipois
- FANUC America
- J.H. Fletcher
- Near Earth Autonomy
- Park Derochie, Inc.
- PPG Allison Park Coatings Innovation Center
- Robotic Technologies of Tennessee
- Titan Robotics
- Wolf Robotics

J. Peter Ault, Sr. Consultant Elzly Technology | *A KTA Tator Company* pault@elzly.com