Scaling Up of 3D Printed Castings

ATI Project Manager: Nick Laney Program Technical Representative: Alicia Harmon (HII-Newport News)

> 3/23/2020 NSRP All Panel

MELD Manufacturing Method

MELD is a solid-state process, meaning the material does not reach the melting temperature during the process.

Because of this, MELD is able to produce high-quality wrought materials and parts with low residual stresses and full density and is not susceptible to porosity, hot-cracking, or other common problems that plague melt-based technologies.

Shown: MELD L3 Model Machine

MELD Manufacturing Method

Relevance to Shipbuilding:

- Open air operation allows for scaling up
- Solid metal input reduces danger of powder metal
- No melting means all alloys can be used
- Fully dense parts have wrought and forged properties
- Used for 3D printing and repair

MELD Print Capabilities

MELD Process

Key Parameters for MELD Process: Tool Rotation Rate, Material Feed Rate, Tool Traverse Rate, Layer Height

- The MELD process is performed by passing the filler material through the hollow rotating tool (stirring tool).
- Frictional heating creates robust metallurgical bond.
- Subsequent layers are created by raising the tool by the desired layer height
- Advantages:
 - Significant grain refinement
 - Wrought material properties
 - Fully dense depositions without secondary processing such as hot isostatic pressing or sintering.
 - Distortion in the as-built parts is significantly lower than fusion-based AM processes.

MELD Printers

	B8	L3	K2			
Cubic build space	3ft ³	14.2 ft ³	81.6ft ³			
Build volume (x, y, z)	36in x 12in x 12in	45 in x 23 in x 23 in	82in x 43in x 39in			
Table size	42in x 18in	51 in x 23 in	86in x 43in			
Overall dimensions (footprint) L x W x H	10ft x 11ft x 11ft	10.2 ft x 7.6 ft x 13.3 ft	20.5ft x 15.3ft x 14.5ft			
All machines						
Typical power in operation:	10-20A	Build material:	Solid Metal			
International power required:	3-phase, 400V, with 125 A, 50 Hz	Material range:	Wide Variety			
USA power required:	3-phase, 400V, with 125 A, 60 Hz	Open air operation:	Yes			

Project Goals

The project goals were to:

- To deposit material at a higher rate
- Demonstrate printing capability in aluminum to keep costs down.
- Identify potential nozzle head materials that can be procured and tested for longevity in a future project.

The reach goals were to:

- Successfully print a part using the increased deposition rate.
- Conduct metallurgical analysis on the printed parts to ensure the quality met expectations.

Project Task Schedule

Task	Q1 - 3/1	Q2 - 6/1	Q3 - 9/1	Q4 - 12/1
Project Setup and Kickoff Meeting				
Printed Part Selection				
Stirring Tool Modification				
Stirring Tool Manufacturing				
Stirring Tool Testing				
Conduct Test Program				
Review and Document Testing				
Prepare Final Project Report				
Quarterly Status Reports				_

Task Schedule Expanded

- Project Setup and Kickoff Meeting Q1 Effort
 - Determine SOW
 - Develop Schedule
 - Hold Kickoff Meeting
- Determine Part to be Printed Q2 Effort
 - Conduct Survey or Submit Candidates to be printed (including dimensions)
- Stirring Tool Modification Q2 Effort
 - Larger opening for increased deposition rate
- Stirring Tool Manufacturing Q3 Effort
 - Fabricating nozzle head from 'tool steel'
- Stirring Tool Testing Q3/Q4 Effort
 - Ensure fabricated stirring tool prints under normal operating conditions
- Conduct Test Program Q3/Q4 Effort
 - Test for increased deposition rate
 - Create final part
 - Test metallurgical properties
- Review and Document Testing Q4 Effort
 - Review Deposition Rate
 - Document Nozzle Performance Results
- Prepare Final Project Report Q4 Effort
 - Collectively combine all reporting MELD has conducted into final report format
- Quarterly Status Reports

Increasing Deposition Rate

- Larger Tool/Nozzle
 - More usable material per tool mass
- Larger Feedstock
 - More depositable material available per tool/nozzle

Printing Results

- Layers
 - Halved the number of layers per build
- Deposition Track
 - 33% wider deposition track
- Deposition Rate
 - Increased from 50.6 to $180 \frac{in^3}{hr}$

Deposition Rate Comparison

--0.375 --0.500

Quality Testing: Mechanical Properties

EB Part Candidate - Flat Copper Tube Cold Plate

Back

Front

Metallurgical Analysis

- Sample Testing:
 - Grain structure changes
 - Hardness
 - Micro grain structure changes
- Metallurgical Results:
 - A solid bond was formed between the base plate and the deposited material and the material was uniform throughout.

Future Nozzle Head Material Options

Material	Additive	Hardness [GPa]	Fracture toughness [MPa.m ^{1/2}]
WC	Со	10-20	5-20
	Ni	15-20	10-15
	ZrO ₂	18-23	4.5-6.5
	AI_2O_3	16-25	<mark>6-10</mark>
	TiB ₂	18-22	<mark>6-</mark> 8
	cBN	20-25	10-15
W-Re	-	7	
pcBN	-	23-27	4-6
ZrB ₂		15-23	3-4
TiB ₂		25-27	6-8

Questions?

