NSRP National Shipbuilding Research Program

NSRP RA Project 2017-443 "Ship Structural Design Optimization (SSDO) for Improved Producibility and Enhanced Life-Cycle Performance"

SDMT Panel Briefing October 29, 2020

> FINCANTIERI MARINETTE MARINE

Rationale – Why Develop Multi-Objective Structural Design Space Exploration for Early-Stage Design

- Traditional Approaches structural design has relied on least weight approaches, correlating with weight-based cost methods, and static design methods in early stage design
- **Resulting Structural Shortcomings** Lightweight structures that are more complex with higher work content to fabricate, and lack robust qualities causing high inservice damage and repair costs from extreme loads and structural fatigue damage
- Structural Design Space Exploration using automated 3D finite element analysis and higher-fidelity loading in early-design enables design alternatives to be engineered and compared for work content and performance through the life cycle
- **Structural Optimization** which implements Lean Design principles offers practical tools for effective design space exploration

Lightweight structures lead to high Total Ownership Costs (TOC)

Structural Work Content

Reduced work content & improved tank access

Ship Structural Design Optimization (SSDO) Program Team

- Fincantieri Marinette Marine
 - Project Lead, shipyard implementation
- MAESTRO Marine LLC
 - Naval architects & software developers, creators of MAESTRO
- NSWC-CD Code 65
 - US Navy lead organization for ship structural design
- Ship Design USA (Bob Keane)
 - Former US Navy Chief Naval Architect, advisor on Navy ship design & construction
- SPAR Associates
 - SMEs in ship cost-estimating and production planning
- P. Jaquith & Associates (Pete Jaquith)
 - SME in Lean Design and Design for Production

SSDO Provides Higher Fidelity Ship Structural Engineering from Concept Design through the Full Life-Cycle

	Design Timeline			
Concept	Preliminary	Functional/Contract	Life-Cycle	
APPL	<u>LYSIS</u>			
Topology Optimization Coarse global FEA model	Selected Topology Opt. Fine mesh midbody model	Full Optimization Finer mesh global model	In-Service Engineering Fine mesh model & class database	
Static Global Loading: - Automated optimization - Design space exploration - Topology search process Stiffener Spacing	Loading: - Secondary & tertiary loads - Basic hydrodynamic loads - Extreme Load Analysis - Spectral Fatigue Analysis - Life-cycle cost factors	Loading: - Secondary & tertiary loads - Full hydrodynamic loads - Extreme Load Analysis - Spectral Fatigue Analysis - Higher fidelity life-cycle cost factors	 Loading: Operational loads Extreme loads Spectral fatigue Damage conditions 	
Full matrix	Selected Candidates	Final Topology	Weer Convertiged to the Converti	

SSDO Improvements Delivered Through the NSRP RA Project

- Concept Design/Topology Optimization Module
- Cost & Production Engineering Module
- Life-Cycle/Corrosion Module

Concept Design/Topology Optimization Module: Design Space Exploration Approach

- We have successfully developed a capability to conduct an optimization of a coarse mesh MAESTRO finite element model that automatically varies frame spacing and then, for each frame spacing, varies the global stiffener spacing with user defined min/max values.
 - For example, 3 frame spacings x 4 stiffener spacings = 12 optimized designs are automatically generated
- The capability was extended to enable the finite element analysis based automated optimization of structures that have the hull principal dimensions changed
 - Length, breadth, depth can be scaled automatically

Design Space Exploration & Structural Optimization

Optimization Settings Interface

Original Optimization Process

- Process implements "Six Stages of Rational Ship Structural Design" as published by Professor Owen Hughes
- Uses mid-body or full ship finite element modeling and analysis with high fidelity naval architectural loading
- Automates structural failure or limitstate evaluations which serve as constraints for optimization
- Optimizes "manufacturing or design clusters" (inner loop)
- Then re-integrates revised full structure to update structural performance evaluation vs criteria

New Topology SSDO Process

- Additional nested global iterations are added to optimize changes of:
 - Stiffener spacing
 - Number of frames
 - Global scale/dimensions (length, beam, depth of hull)
- Automatically generates modified finite element models to support the geometry changes
- Optimizations automatically iterate to convergence
- Each optimized structural design is saved and has metrics extracted for review

Example Optimization Results Stiffener and Frame Iterations

Static Global Loading:

- Automated optimization

- Design space exploration

- Topology search process

Structural Designs

Property 180-		Original	Optimized Design 1	Optimized Design 2	Optimized Design 3	Optimized Design 4	Optimized Design 5
Trans. Fr.	. Spacing	80"	96"	96"	96"	96"	80"
Stiffener	Spacing	21" - 25"	20"	25″	30″	35″	35″
Wei	ght	45.1 LT	40.8 LT (-9%)	43.1 LT (-4%)	45.7 LT (NC)	47.4 LT (+5%)	48.3 LT (+7%)
Weld L	ength	39,791"	42,240" (+6%)	36,290" (-9%)	28,920" (-27%)	26,890" (-32%)	28,040" (-29%)
Moment	of Inertia	2.29E7 in ⁴	2.05E7 in ⁴	2.27E7 in ⁴	2.41E7 in ⁴	2.50E7 in ⁴	2.52E7 in ⁴
Max Stress	deck keel	-13.3/14.0 ksi 11.4/-15.7 ksi	-14.6/15.2 ksi 12.5/-17.0 ksi	-12.7/13.5 ksi 11.6/-16.1 ksi	-12.5/13.2 ksi 10.4/-14.0 ksi	-12.3/12.7 ksi 10.1/-13.9 ksi	-12.3/12.6 ksi 10.2/-13.4 ksi
Selected							

Design

Best case Worst case

Example Optimization Results, with Hull Size Changes

- This example iterates all three:
 - Stiffener spacing
 - Number of frames
 - Global scale/dimensions; this case also changes depth of hull
- Ship arrangement alternatives
- Production schedule and cost impacts
- Impact SWBS Group 100 as well as other SWBS Group production and cost factors

Property 180-2	-	Original	Alternative Design 1	Alternative Design 2	Alternative Design 3	Alternative Design 4	Alternative Design 5
Trans. Fr.	Spacing	80"	80"	96"	96"	96"	96"
Stiffener	Spacing	21" - 25"	25″	20"	25″	20"	25"
Heig	<mark>ght</mark>	360"	360"	396"(+10%)	396"(+10%)	360"	360"
Wei	ght	46.27 LT	37.9 LT (-18%)	49.3 LT (+6.5%)	41.1 LT (-11%)	38.8 LT (-16%)	41.5 LT (-10%)
Weld L	ength	38455″	37879" (-1.5%)	43717" (+13%)	37691" (-2%)	42621" (+11%)	36628" (-5%)
Moment o	of Inertia	2.28E7 in ⁴	1.75E7 in ⁴	3.0E7 in ⁴	2.27E7 in ⁴	1.86E7 in ⁴	1.93E7 in ⁴
Max Stress	deck keel	-13.1/13.9 ksi 11.5/-15.8 ksi	-16.3/17.0 ksi 15.3/-20.4 ksi	-10.1/11.6 ksi 8.9/-13.5 ksi	-12.1/14.7 ksi 11.5/-18.1 ksi	-15.9/15.8 ksi 13.5/-19.4 ksi	-13.9/14.7 ksi 14.7/-20.1 ksi

Cost & Production Engineering Module

- A new MAESTRO software module has been designed to be used by **shipyard cost and production engineers**, not the structural naval architect, for defining cost and production data associated with the structural design and fabrication processes.
 - Specify the plates and shapes in the yard's "structural warehouse"
 - Define structural fabrication processes, e.g. panel lines and their cost metrics
 - Define the structural fabrication components and sequence of assembly
 - **Review results/metrics** for optimized structural alternative designs

Data from this module will be used in SSDO's work content optimization to facilitate realistic reductions/trade studies in work content and producibility enhancements

Cost & Production Engineering Module

Example Structural Warehouse & Process Definition Metrics

Cost & Production Engineering Module

15

US Coast Guard SFLC Sponsored Corrosion Database Toolset Adaptation to SSDO Life-Cycle Assessment Objectives

- Track corrosion and other damage to a vessel's structure in a Rhino plug-in and database
- Collect, organize, and display data spatially, temporally, and across the fleet
 - Spatially: data displayed on 3D model
 - Temporally: display progression of corrosion/damage over multiple surveys
 - Fleet: examine data across vessels of a class
- Plan future surveys and repairs
- Support structural analysis of the vessel in its corroded/damaged condition
 - Structural Response (yielding/buckling)
 - Hydrodynamic Loads Analysis (MAESTRO-Wave)
 - Extreme Load Analysis (ELA)
 - Spectral Fatigue Analysis (SFA)

Corrosion Database Tool Conduct Life-Cycle Impact Analyses and Trade Studies

- Corrosion surveys mapped into database that correlates with ship finite element (FE) model
- Corroded/damaged conditions are automatically transferred to ship FE model for analysis
- Support in-service engineering
 - Structural integrity evaluation
 - Fatigue life forecasting
 - Structural margins assessment
 - Structural repair management
 - Damage condition assessment

SSDO Provides Higher Fidelity Ship Structural Engineering from Concept Design through the Full Life-Cycle

	Design Timeline		
Concept	Preliminary	Functional/Contract	Life Cycle
APPL	ICATION OF MAESTRO	OPTIMIZATION & ANA	LYSIS
Topology Optimization Coarse global FEA model	Selected Topology Opt. Fine mesh midbody model	Full Optimization Finer mesh global model	In-Service Engineering Fine mesh model & class database
Static Global Loading: - Automated optimization - Design space exploration - Topology search process Stiffener Spacing	Loading: - Secondary & tertiary loads - Basic hydrodynamic loads - Extreme Load Analysis - Spectral Fatigue Analysis - Life-cycle cost factors	Loading: - Secondary & tertiary loads - Full hydrodynamic loads - Extreme Load Analysis - Spectral Fatigue Analysis - Higher fidelity life-cycle cost factors	 Loading: Operational loads Extreme loads Spectral fatigue Damage conditions
Full matrix	Selected Candidates	Final Topology	Corrosion database

18

NSRP RA Project 2017-443 Summary "Ship Structural Design Optimization (SSDO) for Improved Producibility and Enhanced Life-Cycle Performance"

- Early-stage design can rapidly engineer and assess the effects of global changes to frame spacing, stiffener spacing, as well as for changes to hull dimensions
- Production & Cost Engineering have the ability to impact the ship's structural design while it can still be changed during design to optimize cost, weight and production
- Life-cycle factors such as extreme load capabilities, structural fatigue life, and damage tolerance can be engineered during design to effectively improve the life-cycle performance and reduce excessive in-service structural repair costs
- In-Service Engineering can leverage the final design model throughout the ship's life to reduce life-cycle costs, engineer structural repairs, assess damage conditions, and ensure ship structural integrity with minimum downtime and repair costs

