Multi-factor Monitoring of Hybrid Laser-Arc Welding Applications First Time Quality Welding Processes

Shawn Sutton, GRA, Prof. B. Panton, and Prof. D Harwig The Ohio State University, Welding Engineering Laboratory

Cody Whitely, NASSCO, Matt Sinfield, NSWCCD, and Stan Ream, EWI

Team: OSU | NASSCO | NSWCCD | EWI | Ingalls |

Problem Statement

- Shipbuilders need real-time weld sensor technology to achieve first time quality of hybrid laser-arc welding (HLAW) applications.
- This project will investigate the monitoring performance, operating characteristics, and implementation requirements of the monitoring technology known as Laser Depth Dynamics (LDD), a form of inline coherent imaging technology (ICIT).

Solution/ Approach

Characterize and evaluate ICIT for HLAW:

- Evaluate monitoring performance of five different process variables
- Evaluate discontinuity / defect detection and process monitoring capability
- Determine measurement sensitivity, reproducibility, and repeatability.
- Assess performance for quality monitoring of pre-weld, in-weld, and post-weld conditions.
- Assess implementation requirements

Task Outline

- Task 1 Develop "Quality Scenario Test" Procedures for ICIT (LDD) System Assessment (OSU, EWI)
- Task 2 ICIT Measurements of Preferred Quality Scenario Test Procedures (OSU, EWI, NASSCO)
- Task 3 ICIT Sensitivity, Reproducibility, and Repeatability (OSU, EWI)
- Task 4 Assessment of ICIT for Pre-Weld, In-Weld, and Post-Weld Measurements for Shipbuilding (OSU, NASSCO)
- Task 5 Assessment of ICIT Implementation Impact and Requirements (OSU, NASSCO)

Task 1 - Develop "Quality Scenario Test" Procedures for ICIT (LDD) System Assessment (OSU, EWI)

- Setup OSU HLAW station with 6KW laser
 - Initial focus: square groove testing on 5 mm AH36
- Develop one or more test procedures to assess monitoring performance for workpiece height, seam profile, keyhole depth, finished weld surface, and transverse profile of full penetration butt joints.
- Test matrix designed to include both square and Y-groove, both partial and full penetration keyhole modes, and effects of joint gap and mismatch
 - Fit-up test conditions based on expected worst case conditions using NASSCO's laser hybrid panel station.
 - Record monitor data pre-weld, in-weld and post-weld
 - Repeat quality scenario tests on thicker Y-groove butt joint samples; ~10 mm

Task 2 – ICIT Measurements of Preferred Quality Scenario Test Procedures (OSU, EWI, NASSCO)

- Evaluate adverse laser parameters with quality scenario tests matrix from Task 1 (groove configuration, fit-up conditions, and keyhole penetration matrix).
 - Vary NASCCO's procedure parameters and joint conditions to evaluate beam misalignment, out-of-focus, and low / high power conditions.
 - Compare to preferred welding conditions for each joint condition.
- Purpose: induce discontinuities and defects that could occur in production, and evaluate ICIT LDD system's ability to measure changes that can be correlated to the respective discontinuity and / or defect.
 - Potential defects: porosity, lack of fusion, lack of penetration, undercut, and underfill
 - Explore process window relationships.
- Select preferred "quality scenario tests" from the Task 2 for sensitivity study in Task 3.

Task 3 – ICIT Sensitivity, Reproducibility, and Repeatability (OSU, EWI)

- Subset of the quality scenario test matrix
 - Two different plate thicknesses (for example 5 mm square groove and 10 mm Y-groove) to provide a range of representative production panel welding configurations.
- Make series of welds using adverse laser parameters to provide a range of good welds and flawed welds.
 - Determine monitor's ability to flag the type quality variation (porosity, lack of fusion, lack of penetration, undercut, and underfill).
- Compared ICIT data to visual and volumetric (ultrasonic and/or radiographic analysis) nondestructive inspection.
 - Based on NDE a number of macro sections will be removed to further characterize the morphology of the discontinuities.
- Perform statistical analysis to determine the sensitivity, reproducibility, and repeatability of the ICIT system.

Task 4 – Assessment of ICIT for Pre-Weld, In-Weld, and Post-Weld Measurements for Shipbuilding (OSU, NASSCO)

- Evaluate ICIT technology for real-time feedback of the pre-weld, in-weld, and post-weld conditions with NASSCO
 - For each data category, evaluate monitoring quality by working with NASSCO and reviewing the data from Tasks 2 and 3.
- Evaluate potential to provide feedback to prior operations and guidance to future operations to drive first-time quality and minimize risk of downstream repair.
- Evaluate preferred measurements and implementation strategy
 - Summarize strategy in the final report.
 - Potential from going from monitoring to quality control will also be assessed.

Task 5 – Assessment of ICIT Implementation Impact and Requirements (OSU, NASSCO)

- The task will be used to establish process metrics for using inline coherent imaging technology on hybrid panel butt welding stations at NASSCO.
- Metrics will be established for cost and infrastructure requirements to implement the ICIT system.
- This assessment will be included in the final report, and used to determine future transition plans.

Project Status

- Designed test matrices and testing procedures
- Designed weld fixture
- Autogenous laser welds in progress
- Quality scenario tests inprocess

3D resolution of pulsed laser keyhole morphology

SEAM PROFILE

A sweep ahead of the process looks for joint position on the workpiece.

WORKPIECE HEIGHT

Measures the distance between the material surface and the welding optics.

KEYHOLE DEPTH

Measured inside the keyhole during the weld to determine actual weld penetration depth in real time.

FINISHED WELD SURFACE

Measured just behind the melt pool captures the height of the finished weld bead.

TRANSVERSE PROFILE

Measures the finished weld bead transverse profile.

Pre-, in-, and post-weld ICIT scan schematic with keyhole, seam, and transverse profiles

Project Benefits

ICIT offers first-time quality capability

- Real-time pre-weld, in-weld, and post-weld measurements.
- Immediate correction of weld quality issues.

ICIT provides control platform for partial penetration fillet applications

- Double-sided welding longitudinal stiffeners to panels.
- Structural T-beam manufacturing.

ICIT depth measurement of cross-section containing porosity defects [1]

[1] P. J. L. Webster *et al.*, "Automatic laser welding and milling with in situ inline coherent imaging," *Opt. Lett.*, vol. 39, no. 21, p. 6217, Nov. 2014, doi: 10.1364/OL.39.006217.

Constant vs. varied laser power, illustrating depth tracking capability of ICIT system

Questions?

Email: harwig.4@osu.edu

