Advanced Development and Implementation of the High Mobility Manufacturing Robot

An NSRP RA Project

Weld Panel Presentation

Robotic Technologies of Tennessee

Edison Welding Institute

Vigor Shipyards

Cahill Consulting
Focus on improved tool for weld mechanization

Background: SHIPYARD ROBOTICS CHALLENGES

Shipyard Characteristics

- Large structures
- Variable weld types
- Poor fit ups
- Hard to access spaces

Limit Automation & Robotics To:

- Spaces that are relatively easy to access
- Robots that can be stationary or guided by track, adjacent surfaces or gantries
- Materials that can be brought to robots

Current solutions:
Limitations/opportunities

Challenge with existing solutions:
• High cost
• Difficult to scale
• Lose effectiveness as product moves out of Panel lines
• Rely on accurate Cad models
• Do not cope well with un-modeled staging

Recent/Continual Advances in robots
• Advanced mobility
• Collaborative robots
 • Full 6 dof pose
 • Lighter, safer, cheaper
 • Enhanced sensing, actuators

PROPOSED SOLUTION

HMMR:
High Mobility Manufacturing Robot
RTT Prior Projects Addressed (RA-2017-427)

1. Integration of HMMR hardware

2. Robot control system and interface

3. Developed man-portability around shipyard

4. Automated weld-path training (using lidar mapping)

5. Validated weld operations in 2F/3F positions (horiz./vertical fillets)

Primary Technical Tasks

- Improved weld-seam sensing to be robust to non-ideal fitup

 Improved weld-seam sensing and algorithms for automated weld-path training

- Adaptable welding options: open-loop and closed-loop weld capability

- Advanced workspace mapping for real-time obstacle avoidance

 Advanced Lidar options + SW

- Develop supports and guides to aid in-field use

- Improved operator interface and experience
Early Task Selection: Vigor Shipyards

Welding stiffeners and gussets at intersection between deckplate and bulkhead

Challenges

- Non-mechanized welding tasks in this region
- Difficult positions to reach
- Wrap-around welds require inspection and some amount of rework
Prototype Platform with Hardware (HMMR)

- Modes of operation:
 - Drag-through teach mode
 - Teach job positioning mode
 - Automatic job positioning mode
- Base: Magnetic switchable
- Arm: Aubo i5 commercial cobot
- End-effector: Supports torch and user interface
- Algorithms: Control robot motion, path and job planning
Target Job:

Welding stiffeners and gussets at intersection between deckplate and bulkhead

Preliminary Approach and Hardware

- HMMR is man portable (approx. 50 lb)
- Operator places HMMR on the flange of a stiffener approximately 2 feet from the bulkhead
- Switchable magnetic base secures robot to stiffener

- HMMR measures key points on the stiffener to teach weld path
• Task: T-Stiffener with gussets welds at deck plate and bulkheads
• Task workspace: ~300mm (12 inch) sphere
• HMMR workspace: ~ 950 mm (37 inch) sphere
• HMMR positioned on stiffener
• Mobile Base is magnetic switchable base to attach to top of stiffeners
• To be moved by operator
• Weight of Arm and base is ~50 lbs.
Mobile Base Testing

- Mock-up of weld task constructed
- Full-scale testing to include sensor and weld testing
- Robot able to reach weld jobs with full orientation capability
- Tested motion and live weld testing
Arm Specs to meet weld requirements

Tool motions tested at 600 ipm

<table>
<thead>
<tr>
<th>Axis/Joint</th>
<th>Range</th>
<th>Speed</th>
<th>Torque</th>
</tr>
</thead>
<tbody>
<tr>
<td>Axis rotation base J1</td>
<td>(+/-) 175 °</td>
<td>150 ° / sec</td>
<td>207 Nm (153 ft-lb)</td>
</tr>
<tr>
<td>J2 axis rotation shoulder</td>
<td>(+/-) 175 °</td>
<td>150 ° / sec</td>
<td>207 Nm (153 ft-lb)</td>
</tr>
<tr>
<td>J3 Elbow rotation axis</td>
<td>(+/-) 175 °</td>
<td>150 ° / sec</td>
<td>207 Nm (153 ft-lb)</td>
</tr>
<tr>
<td>J4 rotation axis wrist</td>
<td>(+/-) 175 °</td>
<td>180 ° / sec</td>
<td>34 Nm (25 ft-lb)</td>
</tr>
<tr>
<td>J5 wrist axis</td>
<td>(+/-) 175 °</td>
<td>180 ° / sec</td>
<td>34 Nm (25 ft-lb)</td>
</tr>
<tr>
<td>J6 rotation axis wrist</td>
<td>(+/-) 175 °</td>
<td>180 ° / sec</td>
<td>34 Nm (25 ft-lb)</td>
</tr>
</tbody>
</table>
• Modes of operation:
 • Drag-through teach mode
 • Teach job positioning mode
 • Automatic job positioning mode
• Base: Magnetic switchable
• Arm: Aubo i5 commercial cobot
• End-effector: Supports torch and user interface
• Algorithms: Control robot motion, path and job planning
Strategies

Algorithms developed
- Path planning
- Mapping Weld path to robot frame
- Torch wire-tip sensing
- Laser-based point sensing
- Laser-base line sensing

Preliminary Testing

Testing covered:
- Wrap-arounds *
- Vertical up fillets *
- Horizontal fillets *
- Teaching weld paths
- Weld Job alignment

* All welding guided by EWI
* Powerwave 450, Pulse mode, Tregasssis torch
Video demonstration

https://vimeo.com/463090662/3c813a4745