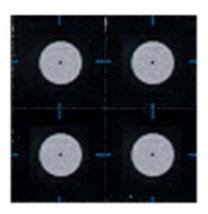
Applications of Targetless Photogrammetry for Facilities Documentation and Close Range Metrology


Justin Novak - NNS 5/15/2020

Overview

- Traditional photogrammetry is used widely throughout NNS current metrology efforts
 - Technology relies on physical stickers placed on part
 - Relatively quick measurements
 - Significant set up and tear-down required

- Variant of this tech potentially removes:
 - Material costs (photogrammetric codes and targets) Sticker Targets
 - Survey set up time
 - Support services (JLG, crane, or staging)

Overview cont

- Targetless Photogrammetry is increasingly used in Architecture and Oil/Gas applications with forgiving accuracy requirements
- Research released in 2018 showed that advances in the tech may allow accuracy to support some Metrology surveys
- This project sought to
 - Characterize achievable accuracies in shipbuilding conditions
 - Evaluate shipbuilding applications for suitability

- 1. Identify hardware needed to perform targetless photogrammetry
- 2. Identify hardware requirements for drone based photogrammetry
- 3. Identify basic software requirements
- 4. Identify scale and common point targets available
- 5. Develop minimum process to solve a point cloud from photo data
- 6. Develop minimum process to solve a textured mesh from photo data
- 7. Develop workflow to transfer and groom data to a workable format
- 8. Develop and run testing program to quantify the environmental characteristics required to realize 2 sigma survey accuracies
- 9. Determine maximum 2 sigma accuracy boundary
- 10. Evaluate suitable use cases (NNS + Ingalls)

Task 1 & 2 Hardware Requirements

Metrology Applications

Facilities Documentation

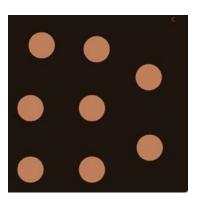
- Digital SLR with high internal stability
 - Nikon D3200
 - Olympus E-10

- Drone suitable for camera payload
 - DJI S1000

- Digital SLR with high internal stability
 - Cannon 5D Mark III

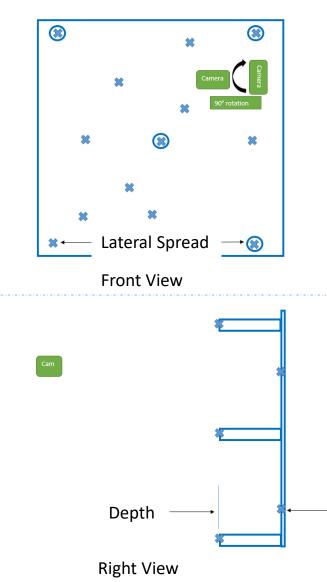
DJI S1000 Drone

Tasks 3 and 4


Basic Software Requirements

- iWitnessPRO or Australis
 - 2D to 3D Conversion
- CloudCompare (Freeware)
 - Point Cloud Processing
- Computing requirements
 - 64-bit Microsoft Windows® 7 / 8 / 10 Operating Systems
 - Minimum 8 GB of RAM. 16 GB or more recommended for point cloud/ mesh generation.

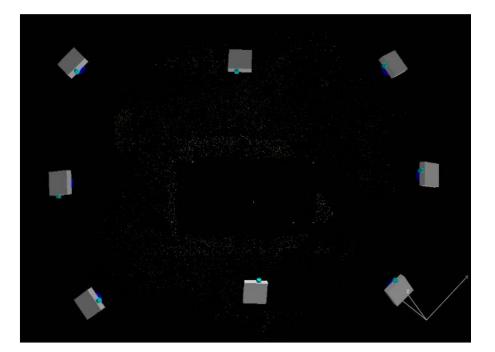
Scale and Common Targets


• Scale Bar

- Invar adjust length bars
- 1" retro-reflective offset targets
- Red Retro Reflective Coded Targets (optional)

Red Retro Reflective Coded Target

Tasks 5-7 General Workflow - Calibration

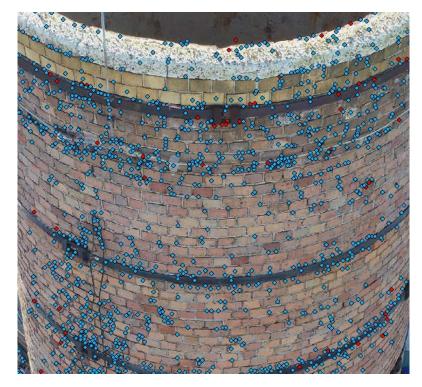


Calibration

- Achieved using:
 - Pictures taken during survey
 - Separate event before survey
 - Zoom cannot be adjusted after Calibration
- Requirements
 - Stations @ various positions
 - Rotate subset of pictures 90°
 - At least 1 station
 - Up to half of all stations
 - Depth of features used should be at least 10% of lateral area

Tasks 5-7 General Workflow - Data Capture

- 2D photographs are taken around the part
 - Number of photos depend on:
 - Size of part
 - Complexity of part
 - Distance of Camera to part
 - Processing time increases with number of photos
 - Time increase exponential with additional photos
 - Observed processing times varied from 10-150 mins



Camera stations around rectangular artifact

Tasks 5-7 Gen Workflow – 3D Conversion

- 1. 2D Picture matching
 - Coded Targets
 - Natural Features
- 2. Bundle adjustment
 - Self Calibration
 - Triangulation
 - Resection

3. Point Cloud /Mesh Creation

Blue dots show features identified for matching

Tasks 8-9 Accuracy Characterization

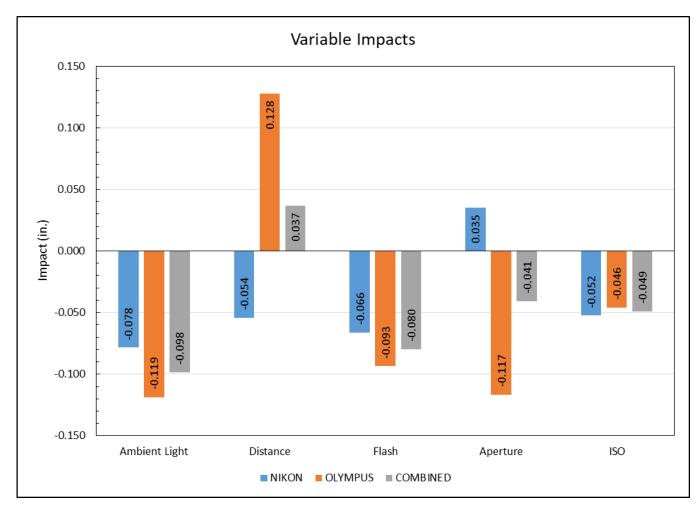
- Design of Experiments used with 6 variables
 - Ambient brightness
 - Camera flash
 - Distance from artifact
 - Aperture
 - ISO
 - Sensor (Camera)
 - Nikon D3200
 - Nikon AF-S 18-55mm
 - Olympus OM-D E-M10
 - Rokinon FE75MFT-B

Number	Ambient Light	Distance	Flash	Aperture	ISO
1	+1	+1	+1	+1	+1
2	+1	+1	+1	-1	-1
3	+1	+1	-1	+1	-1
4	+1	+1	-1	-1	+1
5	+1	-1	+1	+1	-1
6	+1	-1	+1	-1	+1
7	+1	-1	-1	+1	+1
8	+1	-1	-1	-1	-1
9	-1	+1	+1	+1	-1
10	-1	+1	+1	-1	+1
11	-1	+1	-1	+1	+1
12	-1	+1	-1	-1	-1
13	-1	-1	+1	+1	+1
14	-1	-1	+1	-1	-1
15	-1	-1	-1	+1	-1
16	-1	-1	-1	-1	+1

Design Configurations

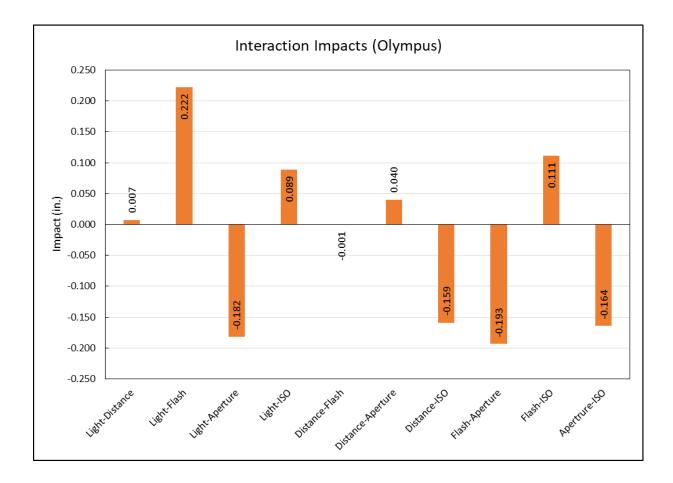
Tasks 8-9 Results - Olympus

Test Number	Ambient Light (lux)	Distance (ft)	Flash	Aperture	ISO	Flatness Deviation (in.)	2σ Accuracy (in.)
1	850	3	ON	22	3200	0.609	±0.105
2	850	3	ON	8	400	0.329	±0.042
3	850	3	OFF	22	400	FAILED	
4	850	3	OFF	8	3200	0.170	±0.029
5	850	1	ON	22	400	0.328	±0.044
6	850	1	ON	8	3200	0.203	±0.049
7	850	1	OFF	22	3200	FAILED	
8	850	1	OFF	8	400	0.208	±0.035
9	90	3	ON	22	400	FAILED	
10	90	3	ON	8	3200	0.202	±0.025
11	90	3	OFF	22	3200	FAILED	
12	90	3	OFF	8	400	0.848	±0.231
13	90	1	ON	22	3200	0.403	±0.077
14	90	1	ON	8	400	0.221	±0.035
15	90	1	OFF	22	400	FAILED	
16	90	1	OFF	8	3200	0.458	±0.092

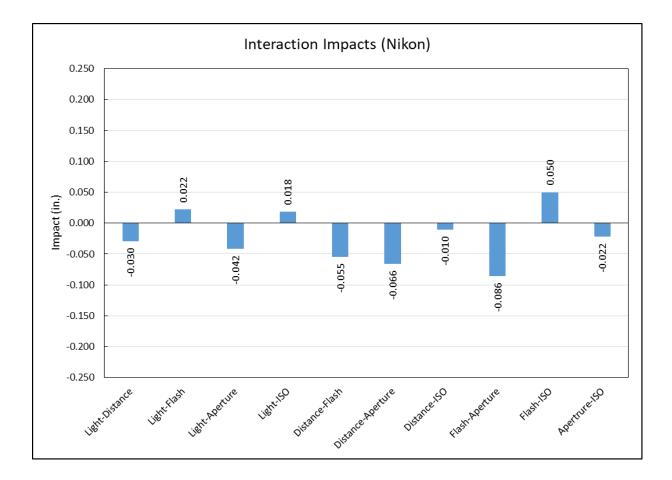

Olympus OM-D E-M10 Camera with Rokinon FE75MFT-B Lens

Tasks 8-9 Results Nikon

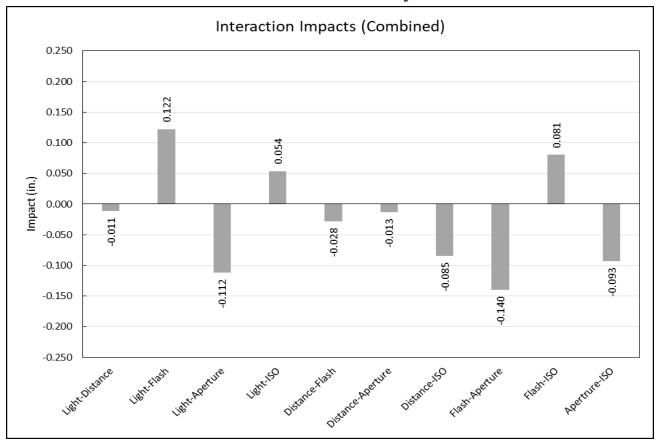
Test Number	Ambient Light (lux)	Distance (ft)	Flash	Aperture	ISO	Flatness Deviation (in.)	2σ Accuracy (in.)
1	850	3	ON	22	3200	0.215	±0.045
2	850	3	ON	8	400	0.096	±0.015
3	850	3	OFF	22	400	FAILED	
4	850	3	OFF	8	3200	0.180	±0.020
5	850	1	ON	22	400	FAILED	
6	850	1	ON	8	3200	0.234	±0.024
7	850	1	OFF	22	3200	0.171	±0.017
8	850	1	OFF	8	400	0.314	±0.024
9	90	3	ON	22	400	FAILED	
10	90	3	ON	8	3200	0.162	±0.018
11	90	3	OFF	22	3200	FAILED	
12	90	3	OFF	8	400	0.386	±0.053
13	90	1	ON	22	3200	0.249	±0.033
14	90	1	ON	8	400	0.287	±0.020
15	90	1	OFF	22	400	FAILED	
16	90	1	OFF	8	3200	0.316	±0.032


Nikon D3200 Camera with Nikon AF-S 18-55mm Lens

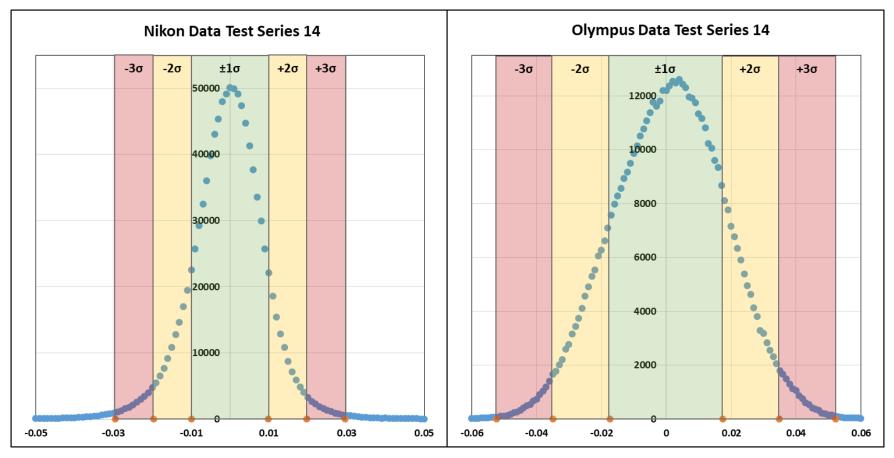
Tasks 8-9 Results Variable Impacts


Negative values indicate that flatness deviation is lowered when that variable has a higher value. The greater the spike, the more of an impact the variable has on the value.

Tasks 8-9 Results Interaction Impacts


Largest impacts result in photos that are either too dark or too light, decreasing the contrast needed to resolve features

Tasks 8-9 Results Interaction Impacts


Largest impacts result in photos that are either too dark or too light, decreasing the contrast needed to resolve features

Tasks 8-9 Results Combined Interaction Impacts

Largest impacts result in photos that are either too dark or too light, decreasing the contrast needed to resolve features

Tasks 8-9 Results – 2 Sigma Accuracy

Example Data showing distribution of z-position of points with regard to as-built plane

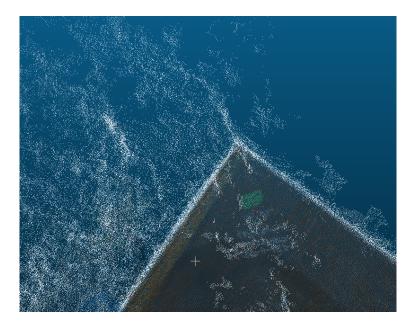
Task 10 - Applications

- Pilot Surveys were conducted at NNS and Ingalls Shipbuilding
- Poor Performance
 - Thin structural members
 - Part edges
 - Homogenous/reflective surfaces
- Excellent Performance
 - Facility Documentation
 - Precut in-way-of
 - Casting inspection

Top view of generated point cloud showing corrugated roof and terrain

Side view of corrugation, very low noise

Recommendations


- Camera settings should favor maximum detail (color, focus, etc) as opposed to the high contrast favored by traditional photogrammetry
- Accuracy is driven heavily by
 - Megapixels of the sensor
 - Quality of the lens
 - Distance from part
 - Internal stability of the Sensor
- Camera stations should be limited as post processing time can become untenable

Recommendations

- Noise generated in low light conditions/ on edges
- Technology needs to mature before complete integration into Metrology toolsets

Blue points show areas of noise outside the 2 sigma boundary of ±0.018"


Noise on plate edge generated from distant objects

Recommendations

- Ready for immediate integration into Facilities Documentation processes
- Independently or in parallel with laser scanning
 - Large, outdoor areas covered in a relatively low amount of time
 - Difficult to capture areas such as roofs, high altitude features, etc
 - Low implementation costs
 - Fast survey time
 - Area covering 8 terrestrial scans (~2 hours) surveyed in 8 mins

Top view of generated point cloud showing corrugated roof and terrain

Side view of corrugation, very low noise

