A Standards and Technology Roadmap for Enabling Digital Enterprise in Shipbuilding

Thomas Hedberg, Jr.
Systems Integration Division, Engineering Laboratory
National Institute of Standards and Technology

Presented to the NSRP Joint Panel Meeting
Aerospace

https://www.wired.com/2013/06/boeing-robots-777/
Automotive

“Car assembly line of Geely in Beilun District, Ningbo” by Siyuwj is licensed under CC BY-SA 4.0
Shipbuilding

B.L.U.F.

Shipbuilders need open architectures to support the “brownfield” realities of manufacturing and allow interconnectivity across decentralized systems. Distributed manufacturing systems would address this industrial need by coupling existing technologies with the Internet of Things, Big Data, and Artificial Intelligence to enable advanced variant configuration – allowing Industry to be agile and flexible enough to manufacture local to the end user, in lot sizes of one, with first time yields.
Presentation Overview

• Let’s speak the same language

• What is a Distributed Manufacturing System (DMS)?

• Challenges and Opportunities for Shipbuilding

• Digital Threads and Digital Surrogates

• Proposed direction for standards and technology
DISCLAIMER

- Identification of commercial systems does not imply recommendation or endorsement by NIST

- Identified commercial systems are not necessarily the best available for the purpose

Supplemental graphics used in this presentation were provided by PRESENTERMEDIA
Translation, Please?

• System = people (e.g., engineers, trades, admins), machines, processes,
 •
 •
 •
 things
What is a Distributed Manufacturing System?

A manufacturing **system** composed of **heterogeneous components** having a means of semantic interoperability that enables the **coordination and control** of activities.
The Problem: Decision Making in Distributed Environments

Design Manufacturing Sustainment

Level 4 (ERP)
Business Planning & Logistics
Plant Production Scheduling, Operational Management, etc.

Level 3 (MES)
Manufacturing Operations Management
Dispatching Production, Detailed Production Scheduling, Reliability Assurance, ...

Level 2 (Monitor)
Batch Control
Continuous Control
Discrete Control

Level 1 (Sense)

Level 0 (Process)
People and Machines

Thomas Hedberg - NSRP Joint Panel Meeting - Chicago IL
Why?
“There are problems that manufacturing companies have been trying to solve for decades. How do I make my inventory management more efficient? How do I match the supply of product that I’m making with the actual demand?”

Rick Smith, co-founder of Fast Radius

On the need for a Digital Supply Chain

http://www.webcitation.org/6xjLMf63a
Why?

• Industry wants and needs agility and flexibility [1]

• Simplicity through distributed complexity [2]

• Change in demand (lot size one, make it near the end user, on-demand ordering) [1, 3, 4]

• MRO/Sustainment needs distributed manufacturing to figure out what capabilities & capacities are located where and what is the topology of that distributed network

• Increased opportunities for MFGaaS → $57 Million Annual Opportunity in simply better sensing, monitoring, and decision making [5]

“We have reached the fundamental limits of what our tools and processes can handle”

Dr. William C. Regli
Past Acting Director, Defense Sciences Office (DSO), Defense Advanced Research Projects Agency (DARPA)
Data and System Interoperability

• Models are simply representations of products, but considered the authoritative sources

• Point-to-Point interoperability is not enough

• Engineering thought processes are applied to data and systems instead of data-science thought processes
Data and System Interoperability

• Need connected systems and linked-data federated across enterprises

• Less than 37% of the US manufacturing workforce understands data analytics, but US Manufacturing Executives rank “predictive analytics” as the most important future technology \(^1\)

• Enhanced sensing and monitoring, seamless transmission of digital information, and advances in analyzing data and trends would save manufacturers $30 Billion annually \(^2\)

• Context varies based on the phase of the lifecycle (e.g., design, manufacturing, quality)

• Context varies based on the level of interaction with data (e.g., systems, operations, enterprises)

• Shape / specification is not enough, behavior and context required too, but all three must be agile and dynamic
Stop thinking about data interoperability, think domain interoperability

Need a normalized method for contextualizing data at different points of the lifecycle

Forget about the data format and think about the “thing” being represented in the data

Move out of the weeds of your domain and think about inputs and outputs at the boundary of your domain

Who needs what information when and who is generating the it?
Product Lifecycle Management (PLM)

• PLM conflated with PDM, MES, ERP

• PLM sold as a tool

• PLM taught as a methodology

• First rule of PLM... “customization”

• Business-driven PLM instead of PLM-driven business
Product Lifecycle Management (PLM)

• Customization: Stop it!

• One system is not better than another system. One platform is not better than another platform. The best is in what you have already invested!

• Need standard methods for mapping the representations from one system to another in distributed and federated environments
Trustworthiness and Interoperability

• Inherent distrust between operating units and among supply chain

• Traceability Interoperability

• Authentication, authorization, traceability vs. intellectual property rights
Trustworthiness and Interoperability

• If you cannot trust your partners and supply chain, then why are you doing business with them?

• Digital signatures and certificates: Trust, but verify!

• Authentication, authorization, and traceability are three pillars of trust that protect intellectual property
Technologies vs. Standards

• Proprietary technologies and specifications are being pushed as standards

• No open geometric modeling kernels developed with standards-based information models

• Technology investment and adoption is based on short-term cost / benefit analysis
Technologies vs. Standards

• Support the new ASME MBE Standards Committee (Fred Constantino, ConstantinoF@asme.org)

• Evidence shows proprietary standards fail to address the underlying barriers to innovation*

• Consortia can address critical interoperability issues, Need more cross-sector public-private partnerships*

Enter Digital Thread and Digital Twins

• Digital Thread, *noun*
 • A connected information flow between standard interfaces for activities across the product lifecycle

• Digital Surrogate, *noun*
 • An application of the digital thread to an environment where integrated information flows are leveraged to digitize systems and apply modeling and simulation to enable dynamic control
Digital Enterprise Architecture
Where are the opportunities?

1. Physical Implementation
2. Cyber-physical Interface
3. Modeling, Simulation, and Operational Control
4. Data Integration
“It’s really an ecosystem of technologies that work together. It’s not just one thing, it’s many things that are working together.”

Alan Amling, VP of strategy at UPS

On IIoT in Logistics

http://www.webcitation.org/6xjLMf63a
Standards and Technology Needs

• Physical Implementation
 • Physical systems integration
 • Wireless sensing and monitoring
 • Cybersecurity Infrastructure

• Cyber-physical Interface
 • Authentication, authorization, and traceability
 • Definition and semantics of manufacturing capability
 • Model-based control

• Modeling, Simulation, and Operational Control
 • Continue Modeling Integration
 • Operational Control and Logistics
 • Fundamental prognostics

• Data Integration
 • Data exploration and wrangling
 • Analytics and knowledge generation
 • Autonomous decision support through trustworthy AI
“What’s changing now is the speed required to deliver a lot size of one. Consumers are no longer willing to wait 15, six, or even three months. Innovation is moving from mechanical features to embedded software, driving a need to condense design cycles – and a convergence of silos. Non-integrated, non-real-time solutions won’t support the next wave.”

John McNiff, VP of Solution Management at SAP

On Configurable, Personalized Products

http://www.webcitation.org/6xjM0bug7
Summary

• Distribute Manufacturing Systems addresses the ISA-95 Level 0-3 discrete space and enables the integration in ISA-95 Level 4

• Enables supply decisions for
 • large lots vs. lot size one
 • made centrally vs. made near the end user

• Supports giving industry flexibility, agility, and operational control over aligning demand with capacity and availability
But wait, there’s more!
Questions?

Thank you for your kind attention!

Thomas Hedberg
thomas.hedberg@nist.gov

Digital Thread: https://go.usa.gov/xNP8x
SMS Test Bed: https://smstestbed.nist.gov
My Publications: https://go.usa.gov/xNP8R

Supplemental graphics used in this presentation were provided by PRESENTERMEDIA