NSRP SP&C Panel “Ideation” Process

Announcement of “Ideas” Pitch – March 2018:
- Team with NSRP Shipyard
- Submit to SP&C Panel Chair, Arcino.Quiero@hii-nns.com, July 6, 2018
- Solicitation information is available on the NSRP’s web site: www.nsrp.org

Sponsor up to 3 Panel projects for 2019:
- Funding – up to $150K
- Duration – 12 months after receipt of funding
- Immediate Impact:
 - Safety
 - Quality
 - Schedule
 - Costs
 - Specification

Return on Investment (ROI)
NSRP SP&C Panel “Ideation” Process

Announcement of “Ideas” Pitch – March 2018:

• Team with NSRP Shipyard

• Submit to SP&C Panel Chair, Arcino.Quiero@hii-nns.com, July 6, 2018

• Solicitation information is available on the NSRP’s website: www.nsrp.org

Sponsor up to 3 Panel projects for 2019:

• Funding – up to $150K

• Duration – 12 months after receipt of funding

• Immediate Impact:
 • Safety
 • Quality
 • Schedule
 • Costs
 • Specification

“Return on Investment (ROI)”

(The Panel Projects Solicitation has been deferred).
NSRP SP&C Panel Funded Projects

Current Projects:
- Thermal Insulating Aerogel Filled Coatings
- Evaluation of Plasma Coating Removal & Surface Preparation
- Partial Blast of UHS Coated Tanks II
- Retention of Epoxy Type VI under Ultra High Solids (UHS)
- Boomlift Carried Environ. Enclosure Implementation of Paperless Paint

Recently Completed Projects:
- ✓ Universal Primer & Surface Prep Process
- ✓ Partial Blast of UHS Coated Tanks
- ✓ Technical Guide for Inaccessible Void Coatings & Treatments
- ✓ Reducing Inspection Costs Using the Latest Digital Inspection Tools
- ✓ Cost Savings Comparison in Appling Polysiloxane vs. Silicone Alkyd Topcoats
- ✓ Paperless Paint Documentation II

Completed in 2016
Completed in 2015
2019 “Ideas Pitch” Timeline

<table>
<thead>
<tr>
<th>Date</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>✓ March 29<sup>th</sup></td>
<td>“Ideas” Announcement</td>
</tr>
<tr>
<td>✓ May 4<sup>th</sup> - May 8<sup>th</sup></td>
<td>Ideas Quad Charts 1<sup>st</sup> Drafts Proposals to Panel Chair</td>
</tr>
<tr>
<td>✓ May 22<sup>nd</sup></td>
<td>Mega Rust “Ideas Pitch” – Quad Chart Format</td>
</tr>
<tr>
<td>July 6<sup>th</sup></td>
<td>Final Submittals to Panel Chair</td>
</tr>
<tr>
<td>July 13<sup>th</sup></td>
<td>Panel Steering Committee Scoring (i.e. voting)</td>
</tr>
<tr>
<td>July 16<sup>th</sup></td>
<td>Forward to SharePoint for other Panels Considerations</td>
</tr>
<tr>
<td>July 20<sup>th</sup></td>
<td>Scoring by Steering Committee to Panel Chair</td>
</tr>
<tr>
<td>Late Aug./Early Sept.</td>
<td>Panel’s Fall Meeting</td>
</tr>
<tr>
<td>TBD</td>
<td>Executive Control Board (ECB) Meeting</td>
</tr>
<tr>
<td>TBD</td>
<td>NSRP Industry Day</td>
</tr>
</tbody>
</table>
2019 Proposed Ideas
<table>
<thead>
<tr>
<th>Project #</th>
<th>Prime / Lead</th>
<th>Project Description</th>
<th>NSRP SP&C Yards</th>
</tr>
</thead>
</table>
| 1 | Excet | **Spray Applied Nonskid** – Demonstrate capability of nonskid spray equipment conforming to CID –A-A-59982 to spray MIL-PRF-24667 Type I, IV, and X nonskid coatings. | • GD-BIW
• GD-EB
• BAE SSY |
| 2 | Excet | **Primers with Extended AF Overcoat Window** – Identify and test the compatibility of commercial high solids primers with extended AF overcoat windows and MIL-PRF-24647 QPD AF paints, potentially eliminating the need for a thumb tacky coat. | • GD-BIW
• GD-EB
• HII-Ingalls |
| 3 | Excet | **Weld Prep for Thermal Spray Nonskid (TSN)** – Test and evaluation TSN over defective welds and welds conforming to MIL-STD-1689A to determine if the localized failures can be attributed to weld defects, TSN, application process, or TSN material properties. | • GD-BIW
• BAE-SSY |
| 4 | ChemQuest Technology Institute | **Pre-Treatment for Powder Coating Processes** – Develop and integrate a robust, environmentally friendly chemical conversion pre-treatment process for steel and aluminum substrates. | • Other Yards TBD |
| 5 | ChemQuest Technology Institute | **Conversion Coating for Field Application** – Significantly reduce cost, improve performance, and increase ROI of exterior naval coatings. | • Other Yards TBD |
| 6 | ChemQuest Technology Institute | **Salt Environment Apparatus – Coatings & Repairs Simulator (SEACaRS)** – Develop and build a walk-in, climate control, environmental salt chamber for testing coatings. | • Other Yards TBD |
| 7 | SeaRobotics Corporation | **Robotic UWH Grooming During Construction** – Maintain hull coatings in a clean an unfouled condition during in-water phase construction. | • Austal
• HII-Ingalls
• HII-NNS |
| 8 | Elzly Technology Corporation | **Reduce Cost & Schedule Impact of Coating Rework** – Reduce the impact of coating rework during shipbuilding and ship repair. | • BAE SSY
• GD-BIW
• HII-Ingalls
• HII-NNS |
| 9 | Elzly Technology Corporation | **Survey of Robotics in Coatings** – Survey the use of blasting & coating robots in other industries. | • Other Yards TBD |
| 10 | HII- Ingalls Shipbuilding | **Deck Optimization Study** – Deliver higher quality deck coating to the Navy. | • Other Yards TBD |
| 11 | HII- Ingalls Shipbuilding | **Reduction in Heat Straightening** – Eliminate unnecessary work and rework in unmanned spaces for cosmetic effect. | • Other Yards TBD |
Project Information

Lead/Prime: Excet

Team Members: (including NSRP’s Yards):
NRL, General Dynamics-Bath Iron Works, BAE, Electric Boat, NCP Coatings, Sherwin Williams, Pentech, Surface Technologies

Duration: 12 months

Objective

Deliverables/Benefits/ROI

- **Deliverables:**
 - Lessons learned and cost benefit analysis
 - ASTM F-718 application requirements
- **Benefits:**
 - Workforce training for application and use of nonskid spray equipment
 - Cleanable polysiloxane nonskid system
 - Extended service life
- **ROI:**
 - (for implementation on Ohio Class submarine)

Financial

Program Funds: Up to $150K

Cost Share: None
Test and Evaluation of Primers with Extended AF Overcoat Window

Panel: Surface Preparation & Coatings (SP&C)

<table>
<thead>
<tr>
<th>PROJECT INFORMATION</th>
<th>OBJECTIVE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lead/Prime: Excet</td>
<td>Identify and test the compatibility between commercial high solids primers with extended AF overcoat windows and MIL-PRF-24647 QPD AF paints, potentially eliminating the need for a thumb tacky second coat. Full scale testing (e.g., dry-dock wall) of candidates identified under FY18 NAVSEA PCoE program. Recommended changes will be made via the ASTM F-718 and 009-32.</td>
</tr>
<tr>
<td>Team Members (including NSRP’s Yards): NRL, PPG, Sherwin Williams, International Paint, Huntington-Ingalls, BAE, BIW</td>
<td>FINANCIAL</td>
</tr>
<tr>
<td>Duration: 12 months</td>
<td>Program Funds: Up to $150K</td>
</tr>
</tbody>
</table>

DELIVERABLES/BENEFITS/ROI

- Deliverables:
 - Lessons learned and cost benefit analysis
 - ASTM F-718 application requirements
- Benefits:
 - Eliminate subjective assessment of thumb tacky
 - Improved QA for second coat of primer (DFT, etc.)
 - Dry-dock flexibility
- ROI:
 - 3.3:1

T.T.

![Test samples](image.png)
Weld Preparation for Thermal Spray Nonskid (TSN)

Panel: Surface Preparation & Coatings (SP&C)

PROJECT INFORMATION

<table>
<thead>
<tr>
<th>Lead/Prime:</th>
<th>Excet</th>
</tr>
</thead>
</table>

Team Members (including NSRP’s Yards):
NRL, Thermal Spray Solutions, Huntington Ingalls

Duration: 12 months

OBJECTIVE

LHD and LHA class ships are experiencing localized premature failure of TSN on welds. Test and evaluate TSN over defective welds (porosity, cracks, scars, etc.) and welds conforming to MIL-STD-1689A to determine if the localized failures can be attributed to weld defects, TSN application process, or TSN material properties. Establish weld preparation requirements (contouring, grinding, etc.) for new construction.

DELIVERABLES/BENEFITS/ROI

- **Deliverables:**
 - Best practices for preparing and coating welds with TSN
 - Change proposal for 009-124
- **Benefits:**
 - Reduce future maintenance costs
 - Extend service life of TSN
 - Reduce FOD risk
- **ROI:** 1:1

FINANCIAL

Program Funds: Up to $150K

Cost Share:
- NAVSEA PCoE - $100K (Proposed FY19)
Non-Phosphate Conversion Pre-Treatment for Powder Coating Processes

Panel: Surface Preparation & Coatings (SP&C)

<table>
<thead>
<tr>
<th>PROJECT INFORMATION</th>
<th>OBJECTIVE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lead/Prime: ChemQuest Technology Institute</td>
<td>To develop and integrate a robust, environmentally friendly chemical conversion pre-treatment process into shipyards currently engaged in powder coat operations on steel and aluminum substrates. Objectives include process development, integration design, cost analysis, and quality improvement assessment.</td>
</tr>
<tr>
<td>Team Members: Troy Chemical</td>
<td></td>
</tr>
<tr>
<td>Duration: 12 months</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DELIVERABLES/BENEFITS/ROI</th>
<th>FINANCIAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Reduce/eliminate current labor intensive pre-treatment processes and costs</td>
<td>Program Funds: $150K</td>
</tr>
<tr>
<td>• Introduce corrosion protection and improved powder coat adhesion</td>
<td></td>
</tr>
<tr>
<td>• Increase powder coat production</td>
<td></td>
</tr>
<tr>
<td>• Increase quality and lifespan of coated parts</td>
<td></td>
</tr>
<tr>
<td>• Reduce premature field failures and maintenance</td>
<td></td>
</tr>
<tr>
<td>• Provide preliminary test data against current non-chemical pre-treatment processes</td>
<td></td>
</tr>
</tbody>
</table>
Non-Phosphate Conversion Pre-Treatment for Powder Coating Processes
Panel: Surface Preparation & Coatings (SP&C)

- Environmentally Friendly
- No Phosphates
- No Waste Water Treatment
- Improved Adhesion
- Enhanced Corrosion Protection
- Nano Technology
- Increased Quality and Lifespan
- Increased Production
- Reduced Labor
- Steel and Aluminum Substrates
Rheology Development of Non-Phosphate Conversion Coating for Field Application

Panel: Surface Preparation & Coatings (SP&C)

<table>
<thead>
<tr>
<th>PROJECT INFORMATION</th>
<th>OBJECTIVE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lead/Prime: ChemQuest Technology Institute</td>
<td>To significantly reduce cost, improve performance, and increase ROI of exterior naval coatings by developing and optimizing an environmentally friendly pretreatment conversion coating and application process that can easily and safely be field applied to steel and aluminum substrates.</td>
</tr>
<tr>
<td>Team Members:</td>
<td></td>
</tr>
<tr>
<td>Duration: 12 months</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DELIVERABLES/BENEFITS/ROI</th>
<th>FINANCIAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Develop rheology for field application</td>
<td>Program Funds: $150K</td>
</tr>
<tr>
<td>• Reduce blast profile requirements</td>
<td></td>
</tr>
<tr>
<td>• Reduce or eliminate primer usage</td>
<td></td>
</tr>
<tr>
<td>• Provide corrosion protection before primer</td>
<td></td>
</tr>
<tr>
<td>• Increase adhesion and improve coating performance</td>
<td></td>
</tr>
<tr>
<td>• Reduce premature field failure</td>
<td></td>
</tr>
</tbody>
</table>
Rheology Development of Non-Phosphate Conversion Coating for Field Application

Panel: Surface Preparation & Coatings (SP&C)

- Environmentally Friendly
- Field Applied Spray/Brush/Roll
- No Phosphates
- No Containment
- Reduce Blasting
- Improved Adhesion
- Corrosion Protection
- Reduced Labor
- Reduced Primer Material
- Increased Lifespan
- Steel and Aluminum Substrates
Salt Environment Apparatus - Coatings and Repair Simulator (SEACaRS) Panel: Surface Preparation & Coatings (SP&C)

Project Information

Lead/Prime: ChemQuest Technology Institute
Team Members:
Duration: 12 months

Objective

To develop and build a walk-in, climate adjustable, environmental salt chamber for the purpose of testing coatings. Objectives include providing the industry with the ability to test products and repair technologies in a simulated oceanic environment using real-time data.

Deliverables/Benefits/ROI

- Design and build a functioning SEACaRS
- Test new and existing coatings in oceanic conditions
- Better define coating dynamics under such conditions
- Better define and determine PM and repair schedules
- Reduce overall cost by testing in a scaled environment
- Change processes, materials, and environments quickly
- Replicate maintenance and repair environments globally in one controlled system
- Preliminary validation of new introductions

Financial

Program Funds: $150K
Salt Environment Apparatus - Coatings and Repair Simulator (SEACaRS)
Panel: Surface Preparation & Coatings (SP&C)

- Walk-In Design
- Temperature/Humidity Controlled
- Salt Concentration Controlled
- Variable Wind Speed
- Media Blasting Capable
- Wash Down Capable
- Validation of New/Existing Coatings
- PM and Repair Scheduling
- Process Validation
- Removable Substrates
- Real Time Data Collection
Robotic UW Ship Hull Grooming during construction

Panel: Surface Preparation & Coatings (SP&C)

<table>
<thead>
<tr>
<th>PROJECT INFORMATION</th>
<th>OBJECTIVE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lead/Prime: SeaRobotics Corporation</td>
<td>Maintain ship hull coatings in a clean and unfouled condition during the in-water phase of construction without coating damage or the use of divers.</td>
</tr>
<tr>
<td>Team Members (including NSRP’s Yards): Austral, Huntington Ingalls, Newport News</td>
<td>Modification of a small HullBUG platform for in water hull grooming with the potential for sea chest husbandry during the in water pre-delivery phase of LCS/EPF, as well as other ships. The HullBUG is designed to accept exchangeable grooming/cleaning tools. The system will then be demonstrated at Austral USA and potentially other sites if funds permit.</td>
</tr>
<tr>
<td>Duration: 12 months</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DELIVERABLES/BENEFITS/ROI</th>
<th>FINANCIAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Demonstration of modified HullBUG ship hull grooming system for LCS/EPF grooming</td>
<td>Program Funds: $150K</td>
</tr>
<tr>
<td>• Reduce cost of diver based hull cleaning operations at Austral</td>
<td>Cost Share: 40%</td>
</tr>
<tr>
<td>• Reduced coating damage prior to delivery due to cleaning operations</td>
<td>SeaRobotics will provide the baseline HullBUG for modification valued at $100K</td>
</tr>
</tbody>
</table>
Robotic UW Ship Hull Grooming during construction

Panel: Surface Preparation & Coatings (SP&C)

- Ship construction requires significant in-water interval prior to delivery
- Hull husbandry is performed during this period with diver driven cleaning equipment
- Current cleaning methods result in coating damage, increased fouling rates, and is performed at significant cost
- Robotics hull grooming can be used at reduced cost with no coating damage
- Potential for sea chest and niche area maintenance
- Prior demonstration at Austral USA showed promising results
- Use of SeaRobotics HullBUG hardware will reduce the project cost
Reduce the Cost and Schedule Impact of Coating Rework

Panel: Surface Preparation & Coatings (SP&C)

<table>
<thead>
<tr>
<th>PROJECT INFORMATION</th>
<th>OBJECTIVE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prime/Lead: Elzly Technology Corporation</td>
<td>Reduce the impact of coating re-work during shipbuilding and ship repair. Specifically:</td>
</tr>
</tbody>
</table>
| **Team Members:** HII-Ingalls, GD-BIW, BAE Southeast Shipyards | • Optimize the work requirements
• Identity/demonstrate improved tools and processes |
| **Duration:** 12 Months | |

<table>
<thead>
<tr>
<th>DELIVERABLES/BENEFITS/ROI</th>
<th>FINANCIAL</th>
</tr>
</thead>
</table>
| • Deliver report including recommended practices for reducing the impact of coating touchup
• Reduce cost by eliminating rework
• Improve quality by optimizing rework procedures | **Program Funds:** Up to $150K
Cost Share: None |
Project Information

Prime/Lead: Elzly Technology Corporation

Team Members: BAE Southeast Shipyards, HII-Ingalls, others TBD

Duration: 12 Months

Objective

Assemble a team of shipyard representatives to survey the use of blasting and painting robots in other industries to identify concepts that may work in shipyards.

Deliverables/Benefits/ROI

- Deliver report documenting the results of a literature review and field visits to observe various abrasive blasting and painting robots in-action.
- Identify opportunities for implementation, possibly through RA projects

Financial

Program Funds: Up to $150K

Cost Share: None
Deck Optimization Study
Panel: Surface Preparation & Coatings (SP&C)

Project Information
Prime/Lead:	HII-Ingalls
Team Members:	TBD
Duration:	12 Months

Objective
Deliver higher quality deck coating to the Navy
- Unit stage primer is insufficient to protect the blast profile until then. Resultant substrate is worn of profile and substantially corroded.
- Blast re-prep is often not feasible by time of deck covering install, resulting in costly and inferior power tool prep of heavily corroded decks.

Deliverables/Benefits/ROI
- Study of in-process Units with varying methods of initial coating systems and/or maintenance.
- Optimized initial coating and/or maintenance of decks would lessen or eliminate late-stage surface prep.

Financial
- **Program Funds**: Up to $150K
- **Cost Share**: None
Reduction in Heat Straightening
Panel: Surface Preparation & Coatings (SP&C)

<table>
<thead>
<tr>
<th>PROJECT INFORMATION</th>
<th>OBJECTIVE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prime/Lead: HII-Ingalls</td>
<td>• Heat Straightening of warped “hungry horse” steel is driven by MIL-STD 1689 requirements. Written for milled steel, not naval ship end products.</td>
</tr>
<tr>
<td>Team Members: TBD</td>
<td>• Eliminate unnecessary work and rework in unmanned spaces for purely cosmetic effect.</td>
</tr>
<tr>
<td>Duration: 12 Months</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DELIVERABLES/BENEFITS/ROI</th>
<th>FINANCIAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Report on effects of heat straightening. Verify a lack of structural improvement</td>
<td>Program Funds: Up to $150K</td>
</tr>
<tr>
<td>• Suggested specification language</td>
<td>Cost Share: None</td>
</tr>
<tr>
<td>• Estimates on savings</td>
<td></td>
</tr>
<tr>
<td>• Large ROI, as this would only eliminate work</td>
<td></td>
</tr>
</tbody>
</table>

Program Funds: Up to $150K
Cost Share: None
Reduction in Heat Straightening

• Requires two steps of work, one to reshape the steel via induced heat, another to repair the induced coatings and substrate profile damage.

• Heat Straightening weakens the steel. The change is purely a cosmetic gain.

• Power tool spot repair of this hot-work damage delivers a lower quality coatings system. Potential significant source of intake/uptake corrosion.

• Would apply to all unmanned or non-visible areas.
Surface Preparation & Coatings (SP&C) Panel 2018-2019 Goals

Arcino “Q” Quiero, Jr. – Newport News Shipbuilding

May 22, 2018
NSRP SP&C Panel 2018-2019 Goals

Increase Membership & Participation

• Active Member Shipyards (6 to 8 Yards)
 Current: 55%
 Goal: 73%

• Coatings Community (20% increase)
 Current: ~40/mtg.
 Goal: ~48/mtg.

Improve Project Management

• Implementation of Paperless Paint
 No Cost Extension (NCE)

• Boomlift Carried Environmental Enclosure
 No Cost Extension (NCE)

• Retention of Epoxy Type VI under UHS
 No Cost Extension (NCE)

• Partial Blast of UHS Coated Tanks II
 No Cost Extension (NCE)

• Eval. of Plasma Coating Removal & Surface Prep
 Kicked-Off 3/19/2018

• Thermal Insulating Aerogel Filled Coatings
 Kicked-Off 4/10/2018

Increase & Improve Communication

Quarterly Panel Updates

Effective Communication
NSRP Member Shipyards (11)
NSRP SP&C Panel Steering Committee

Active Member Shipyards:

✓ BAE Systems Southeast – Steve Cogswell
✓ GD-Bath Iron Works – Robert Cloutier
✓ GD-Electric Boat – Mark Toscano
✓ GD-NASSCO – Angel Zepeda
✓ HII-Ingalls Shipbuilding – Conlan Hsu
✓ HII-Newport News – Arcino “Q” Quiero
✓ NAVSEA 05 – Mark Ingle/Howard Castle

• SP&C Panel Chair – Arcino “Q” Quiero
• SP&C Panel Vice-Chair – Robert Cloutier
• Technical Warrant Holder – Mark Ingle

Member Shipyards:

• Austal – Noble Davidson
 o Bollinger Shipyards
 o Conrad Shipyard
 o Fincantieri Marine Group
 o VT Halter Marine
<table>
<thead>
<tr>
<th>Project ID</th>
<th>Title - Objective</th>
<th>Project Lead</th>
<th>Project Technical Representative</th>
<th>Kick-Off Date</th>
<th>1st Quarter Report</th>
<th>2nd Quarter Report</th>
<th>3rd Quarter Report</th>
<th>Final Report</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>2016-428</td>
<td>Implementation of Paperless Paint - Implement the existing Robust Functional Paperless paint software system by providing the hardware, hands on training, and a shipboard pilot where the legacy (written) system is measured against the Paperless Paint system.</td>
<td>Ross Boyd TruQC</td>
<td>Bob Cloutier Bath Iron Works</td>
<td>1/21/2016</td>
<td>5/1/2016</td>
<td>8/1/2016</td>
<td>9/30/2017</td>
<td>9/29/2017</td>
<td>Project has ended and close-out process initiated. NCEs: 4/20/2017 & 7/20/2017 SSRAC proposal date and outcome</td>
</tr>
<tr>
<td>2017-417</td>
<td>Retention of Epoxy Type VI under Ultra High Solids - Develop data needed to request Navy approval to apply a MIL-PRF-23236 Type VII Ultra High Solids (UHS) epoxy over retained MIL-PRF-23236 Type VI epoxy in critical coated areas that typically receive Type VII epoxy in a single or two-coat system. The Type VI epoxy will offer a cost effective solution.</td>
<td>Conlan Hsu Ingalls Shipbuilding</td>
<td>Mark Toscano Electric Boat</td>
<td>1/17/2017</td>
<td>3/31/2017</td>
<td>6/30/2017</td>
<td>9/30/2017</td>
<td>*Final Report due 5/30/2018</td>
<td>NCE: 11/2017 SSRAC proposal date and outcome</td>
</tr>
<tr>
<td>2017-421</td>
<td>Partial Blast of UHS Coated Tanks II - Continue to develop the partial blast concept. The objectives are to: (1) perform condition assessments, (2) perform additional demonstration, (3) continue to share experiences, and (4) develop implementation practices for the “partial blast” approach.</td>
<td>Pete Ault Elzly Technology</td>
<td>Bob Cloutier Bath Iron Works</td>
<td>10/3/2016</td>
<td>3/31/2017</td>
<td>6/30/2017</td>
<td>9/30/2017</td>
<td>*Final Report due 5/31/2018</td>
<td>NCE: 1/9/2018 - The primary reason for the NCE was that the new demonstration ship and the ship from last year’s demonstration were not available when anticipated. SSRAC proposal date and outcome - A change proposal was submitted to SSRAC in 2017, but the proposal was rejected because it was too lengthy (4 pages). As you may recall, the shipyards were vocal about SSRAC adding too much language to the standard items last year, so most proposals with any significant added volume (i.e., page numbers) were rejected. We began to develop an industry standard so that we’d simply have a reference to a new standard (i.e., a short phrase instead of 4 pages).</td>
</tr>
</tbody>
</table>

Note: NCE equate to No Cost Extension
SSPC Board of Governors Election

Robert Cloutier, Manager, Coatings & Corrosion, GD-Bath Iron Works (BIW). Bob has thirty eight years of Shipbuilding experience, all in the coatings arena.

Certifications Include:
- SSPC-NBPI
- SSPC-QCS
- SSPC-C7, C12, & C14
- NACE Level 3

Member:
- SSPC & NACE

NSRP SP&C Panel Vice Chair

Stephen Cogswell, Paint Craft Manager II, BAE Systems Southeast Shipyards. Cogs has thirty seven years of Shipbuilding experience, all facets of Marine SP&C.

Certifications Include:
- SSPC-NBPI
- SSPC-C7, C12, C13, & C14
- CAS I & II
- NACE Level 3

NSRP SP&C Panel Involvement:
- Shipyard Delegate
- Major Initiative Team Lead (MITL)
- NSRP SP&C Panel Former Chair
Responsibility & Takeaways

“You, the Coatings Community, are the SMEs. You owe it to yourselves, your Shipyards, and your Companies to stay aware of and understand current and proposed requirements. Don’t allow someone else to determine your fate or the fate of your Company without your input”.

“The work isn’t completed until the ship is painted and the coating system is documented; preferably paperless”.

“Together, let’s paint a picture that allows us, the Coatings Community, to be successful!!!”

“Q”
Thank You