

Evaluation of Advanced Gas Metal Arc Welding and Distortion Mitigation Techniques

Kent Leclair Reference: 6131C.FR July 31, 2008

6131C.FR

EVALUATION OF ADVANCED GAS METAL ARC WELDING AND DISTORTION MITIGATION TECHNIQUES

FINAL REPORT

July 31, 2008

Submitted to:

ATI 5300 International Blvd North Charleston, S.C. 29418

Submitted by:

BMT FLEET TECHNOLOGY LIMITED 311 Legget Drive Kanata, ON K2K 1Z8

> BMT Contact: Darren Begg Tel: 613-592-2830, ext 229 Fax: 613-592-4950 Email: <u>dbegg@fleetech.com</u>

Category B Government Purpose Rights Approved for Public Release, Distribution is Unlimited

BMT Fleet Technology Limited accepts no liability for any errors or omissions or for any loss, damage, claim or other demand in connection with the usage of this report, insofar as those errors and omissions, claims or other demands are due to any incomplete or inaccurate information supplied to BMT Fleet Technology Limited for the purpose of preparing this report.

BMT DOCUMENT QUALITY CONTROL DATA SHEET

REPORT:

Evaluation of Advanced Gas Metal Arc Welding and Distortion Mitigation Techniques for Thin Panel Steel and Aluminum Structures

DATE:

July 31, 2008

PREPARED BY:

Kent Leclair, Senior Technologist, Welding Engineering

REVIEWED AND APPROVED BY:

Dar en Begg, Program Manager, Welding and Inspection

REPORT PRODUCTION BY:

Document Editor

PROJECT TEAM MEMBERS:

Marinette Marine Corp ESAB Hobart Brothers

ACKNOWLEDGMENTS

The Author would like to acknowledge the following people for their support in this project.

- Bruce Halverson and Mark Spicknall (Marinette Marine Corp.) for donating the steel and aluminum stiffeners and plate used in this project, providing benchmark welding procedure data, and for providing technical support to this project.
- Jamie Scripnick and Victor Taylor (ESAB) for donating T-GMAW and Pulse on Pulse welding systems, software, seam tracking, aluminum electrodes, and for providing technical support to this project.
- Russ McClellan (Hobart Brothers) for donating metal cored electrodes and providing technical support to this project.

EXECUTIVE SUMMARY

The US Navy is in the process of transforming their surface combatant fleet with highly capable, multi-mission Destroyers, advanced Cruisers and a new breed of focused mission ships, such as the Littoral Combat Ship (LCS). The Lockheed Martin LCS design is a survivable, semi-planing steel monohull that provides outstanding maneuverability with proven sea-keeping characteristics to support launch and recovery operations, mission execution and optimum crew comfort. The LCS1 will be the first surface combatant to be classed under the new Naval Vessel Rules by the American Bureau of Shipping. The LCS1 is currently being built by Marinette Marine Corporation (MMC). Bollinger Shipyards constructed one of the LCS1's stern modules. The General Dynamics (GD) LCS design features an innovative, high-speed trimaran aluminum hull that is based on a proven Austal (Henderson, Australia) design. The LCS2 is being built by GD Bath Iron Works (GDBIW) at Austal USA in Mobile, Alabama.

Each LCS features thin light weight steel and aluminum alloy materials that are highly sensitive to welding induced distortion that when not controlled can lead to costly fit-up and rework efforts throughout the build process. To address this issue, researchers have been examining welding processes such as Friction Stir Welding (FSW) and laser or laser hybrid processes for consideration in full production. Although very effective at reducing distortion, the current technology for FSW does not allow for weld joints to be completed at a high rate of productivity. The laser and/or laser hybrid welding processes provide a good combination of distortion control and enhanced productivity and has been proven in Europe to be effective in shipbuilding applications, however the equipment and required maintenance is very costly. Furthermore, for each of these processes weld joint fit-up needs to be precisely controlled to be effective in production and therefore extensive tooling is required.

In addition to the distortion issues, there are requirements in LCS construction that most primed steel structures not have their primers removed prior to welding. In order to produce sound welds when welding over primers welding processes such as flux cored arc welding (FCAW) with special electrode formulations have been traditionally used. Slow welding speeds are employed to allow the gases generated from the decomposed primers to sufficiently escape the weld prior to solidification. The slow welding speeds result in higher heat inputs that generate increased levels of distortion in thin panel structures as well as low production rates. In commercial shipbuilding it is common practice to remove the primers prior to welding by grit blasting and then reapply after the welding operations are complete. This method of construction adds time and money to the build process and shipyards are always looking for productive methods to effectively weld over primers to reduce their costs.

To increase the productivity of welding, processes with high deposition rates need to be employed; however, to reduce distortion high travel speeds and low heat inputs are required. Welding processes that provide a suitable balance between productivity and distortion control need to be considered as well as provide a significant return on the equipment investment. In addition, methods that increase the level of restraint in the structure need to be investigated that have the potential to reduce distortion in thin panel structures. The methods that are discussed following have been investigated in this project to resolve the aforementioned issues without sacrificing quality, and these are: <u>Controlled Dip Transfer Welding:</u> The controlled dip transfer welding processes (such as Lincoln Electric's Surface Tension Transfer (STT) and Miller Electric's Regulated Metal Deposition (RMD)) have been tested on the first LCS at MMC and have proven appropriate for a limited set of welds on distortion sensitive areas. This process provides low heat input welds with little to no spatter and excellent weld geometries; however, the process is not suited for a large range of applications. This report provides detailed guidelines and procedures for the application of the STT process. Although the process is successful in producing welds with low distortion, it is not highly productive and therefore does not provide a suitable balance between productivity and distortion for many applications such as welding of stiffeners to base plates in panel line production.

Superpulse Technology: ESAB has recently released a series of new GMAW technologies including pulse/pulse, pulse/short, and pulse/spray. The pulse/pulse technology has similar attributes to the STT and RMD processes; however, unlike the STT and RMD processes it can be applied to the welding of aluminum structures. Optimal procedures were developed for aluminum welding of stiffener assemblies with the pulse/pulse, pulse/short, and the pulse spray transfers. The pulse/pulse mode of transfer produced improved bead appearance and profile, as well as significantly lower distortion (greater than 30% reduction) compared to the conventional CV process. The trade-off was productivity as the pulse/pulse technology resulted in a 40% decrease in travel speed compared to the conventional CV process.

Tandem Gas Metal Arc Welding (T-GMAW): T-GMAW uses two wires which are fed through a single torch, into the weld pool simultaneously. The T-GMAW process results in a significant increase in deposition rate, requiring higher rates of travel speeds to complete welds of various types and sizes. The higher travel speeds generate lower heat inputs and resulting distortion. The use of metal cored electrodes with the T-GMAW process (referred to as T-MCAW) resulted in a 221% increase in travel speed compared to the benchmark FCAW procedure. With no clean-up operations to remove slag after welding, the actual productivity improvements are estimated at 250%.

Procedures for T-MCAW were developed for welding over primers to utilize the elongated puddle of the tandem arc to extend the degasification period allowing higher travel speeds to be employed without generating weld defects. These procedures resulted in an increase of 140% in travel speed compared to the benchmark FCAW procedure. Porosity counts on fractured weld samples revealed that the T-MCAW process was capable of achieving porosity requirements; however, variations in the primer coating thickness resulted in sections of weld where resulting porosity was not acceptable. It appears that the T-MCAW process is less tolerant to the amount of primer on the material compared to the benchmark FCAW process. It is believed that a mechanical process to mill the edge of the stiffener square, removing primer from only the bottom surface of the stiffener and eliminating ridges where primer settles would make the T-MCAW more feasible. Joint fit-up would be improved with the machine edge reducing the amount of rework and productivity would be improved due to the increased travel speeds achieved with the T-MCAW process.

Mechanical Tensioning: The very nature of the arc welding process, viz., local and nonuniform heating and cooling, is such that it is usually accompanied by distortion of the structure being fabricated. The magnitude of the distortion is controlled in practice within specified tolerances, not only for aesthetic purposes but also to maintain the structural integrity in service. It is preferable to implement techniques and procedures that minimize distortion in the first place since its correction at a later stage entails substantial hidden costs, including an adverse effect on the quality of the subsequent welds and of the overall fabrication (e.g., poor fit-up, greater amount of weld volume, possibly higher residual stresses, etc).

Mechanically applied tension loading parallel to the weld axis during welding has been used by fabricators to minimize the buckling of thin plate during butt welding. Kawasaki Heavy Industries developed several methods to reduce out-of-plane distortion involving mechanical tensioning, and the methods were so successful that they were called the "Kawasaki Perfect Panel Production" method. The tension load forces the weld and thermally upset zone alongside to stretch longitudinally and transverse to the weld to conform to the geometry of the balance of the sheet.

BMT developed a mechanical tensioning set-up for a mock panel line to investigate the effects of pre-tensioned panels on distortion. Results were inconclusive for groove weld operations joining panels together; however, success was achieved in the use of mechanical tensioning to align the fit-up of the panels to be welded.

The mechanical tensioning process was successful in reducing distortion (greater than 30% reduction) in stiffener welding applications of both steel and aluminum applications.

Further work is required to develop a mechanical tensioning arrangement that can provide equal tension along the entire width of the plates to be joined as well as restrain the plates longitudinally during welding. It is believed that a set-up like this would have the potential to produce improved distortion results for seam welding operation of large plates as well as overall improvement in distortion for plates greater than 10" wide.

Further work is also required to develop a process where the bottom edge of stiffeners is machined prior to welding, and welding over primer procedures with T-MCAW utilized to achieve highly productive welds meeting porosity requirements with repeatability. The improved mechanical tensioning arrangement would be employed for welding of stiffeners on large base plates with reduced distortion throughout the assembly.

TABLE OF CONTENTS

1.	INTF	RODUCTION1
	1.1	Problem to be Addressed
	1.2	Scope 1
2.	PRO.	JECT OBJECTIVES
3.	TAS	K 1: DEFINITION OF BENCHMARK WELDING PROCEDURES
4.	TAS	K 2: DEVELOP OPTIMUM TENSION PROFILES 2
	4.1	Design of Tension System
	4.2	Plate Assembly Results
	4.3	Volume due to Plate Deformation
	4.4	FCAW Stiffened Panel Assembly (10" Wide Base Plate) Results
		4.4.1 Net Improvement
5.	TAS	K 3: DEVELOP OPTIMIZED WELDING PROCEDURE AND GUIDELINES FOR
	CON	TROLLED DIP TRANSFER WELDING OF STEEL STRUCTURES
	5.1	Surface Tension Transfer
6.	TAS	K 4: DEVELOP OPTIMIZED WELDING PROCEDURES AND GUIDELINES FOR
	ADV	ANCED PULSE TRANSFERS FOR ALUMINUM WELDING
	6.1	Aluminum Welding with Advanced Processes
	6.2	Pulse Arc/Short Arc
	6.3	Spray Arc/Pulse Arc
	6.4	Stiffened Aluminum Panel Assembly
	6.5	Comparing Benchmark Aluminum Welding Processes
	6.6	Summary of Results for Advanced Aluminum Welding Process
7.	TAS	K 5: TANDEM MCAW (T-MCAW) OF STIFFENER ASSEMBLIES RESULTS 85
	7.1	Stiffened Panel Assembly (10" wide base plate)
		7.1.1 Net Improvement
	7.2	Stiffened Panel Assembly (4' x 10' HSLA 80 Base Plate) 101
		7.2.1 Net Improvement
	7.3	Difference between Average and Displacement Values
	7.4	Porosity Results
	7.5	Productivity Results

APPENDICES

- APPENDIX A: DISTORTION PLOTS FOR GROOVE WELDS
- APPENDIX B: DISTORTION PLOTS FOR FILLET WELDS (STT and FCAW Processes)
- APPENDIX C: STT PROCESS RECOMMENDATIONS
- APPENDIX D: WELDING PROCEDURE DATA SHEETS
- APPENDIX E: DISTORTION COMPARISON BETWEEN FCAW and T-MCAW (10" WIDE BASE PLATES
- APPENDIX F: DISTORTION PLOTS FOR FILLET WELDS T-MCAW PROCESS (10" WIDE BASE PLATES)
- APPENDIX G: NET DISPLACEMENTS FOR FCAW and T-MCAW (4' x 10' HSLA 80 BASE PLATES)
- APPENDIX H: NET IMPROVEMENT VERSUS BENCHMARK PLATE 7 (4' x 10' HSLA 80 BASE PLATES)
- APPENDIX I: CHANGE IN DISPLACEMENTS AFTER WELDING (4' x 10' HSLA 80 BASE PLATES)
- APPENDIX J: NET DISPLACEMENTS FOR FCAW and T-MCAW (4' x 10' HSLA 80 BASE PLATES) WITH CALCULATED AVERAGE DISPLACEMENT
- APPENDIX K: DEVIATION FROM AVERAGE RELATIVE DISPLACEMENT FOR FCAW and T-MCAW (4' x 10' HSLA 80 BASE PLATES)
- APPENDIX L: POROSITY ASSESSMENT FOR PLATE 3
- APPENDIX M: POROSITY ASSESSMENT FOR PLATE 7
- APPENDIX N: POROSITY ASSESSMENT FOR PLATE 8
- APPENDIX O: POROSITY ASSESSMENT FOR PLATE 9

LIST OF FIGURES

Figure 3.1: Welding Gantry and Frame Set-up	4
Figure 3.2: Self Leveling Laser Level	5
Figure 3.3: Beam Projected on Steel Rule	6
Figure 3.4: Plate Layout	6
Figure 3.5: Stiffener Assembly Layout (Steel)	7
Figure 3.6: Stiffener Assembly Layout (Aluminum)	8
Figure 3.7: Stiffener Assembly Layout (Steel 10' Base Plate)	8
Figure 3.8: Welding Procedure Data Sheet for Benchmark SAW	9
Figure 3.9: Welding Procedure Data Sheet for Benchmark FCAW	. 10
Figure 3.10: Welding Procedure Data Sheet for Benchmark STT	. 11
Figure 3.11: Welding Procedure Data Sheet for Benchmark GMAW of Aluminum	. 12
Figure 4.1: Hole Locations in Plate for Mechanical Tensioning	. 13
Figure 4.2: Distance from Plate Edge vs. Lateral Displacement for Hole Locations	.14
Figure 4.3: Side View of Clevice with Plate under Tension	15
Figure 4.4: Top View of Clevice with Plate under Tension	.15
Figure 4.5: View of Entire Plate Assembly under Tension	16
Figure 4.6. Plate Distortion Measurement Grid	17
Figure 4.7: Fit-Up of Plates before Pre-Tensioning	18
Figure 4.8. High Low in Plates before Pre-Tensioning	19
Figure 4.9: Fit-Up of Plates after Pre-Tensioning	19
Figure 4.10: Plate Distortion Measurement Grid	20
Figure 4 11: Plate Distortion Measurement Grid	$\frac{20}{20}$
Figure 4.12: Net Displacement along Transverse Section A11 for Plate 1-Side1	21
Figure 4.12: Net Displacement along Longitudinal Section F for Plate 1-Side1	$\frac{21}{22}$
Figure 4.14: Net Plate Deformation after Welding Plate 1-Side1	$\frac{22}{22}$
Figure 4.15: Net Displacement along Transverse Section $\Delta 11$ for Plate 4-Side1	$\frac{22}{23}$
Figure 4.16: Net Displacement along Longitudinal Section F for Plate 4-Side1	$\frac{23}{24}$
Figure 4.17: Net Plate Deformation (No Weld No Tension - Weld under Tension)	$\frac{24}{24}$
Figure 4.18: Net Plate Deformation after Welding (Tension Case) (No Weld with Tension We	eld
under Tension)	25
Figure 4 10: Net Displacement along Transverse Section A1 for Plate 6-Side1	$\frac{25}{26}$
Figure 4.20: Offset Net Displacement along Transverse Section A1 for Plate 6-Side1	$\frac{20}{26}$
Figure 4.21. Net Plate Volume	20
Figure 4.22: Stiffened Panel Distortion Measurement Grid	$\frac{27}{20}$
Figure 4.22. Suffered 1 and Distortion Wedsurement Ond	29
A somply	27
Figure 4.24: Not Displacement along Longitudinal Section D for STT Stiffener Denchmark	32
A samply	22
Eigung 4.25. Not Divelopment along Longitudinal Section A for ECAW Stifferer Development	: 33 1-
Figure 4.25: Net Displacement along Longitudinal Section A for FCAW Sufferer Benchmark	K 22
Assembly	33
rigure 4.20: INELDISplacement along Longitudinal Section B for FCAW Stiffener Benchmark	۲ ۲
Assembly	54
Figure 4.27: Net Displacement along Longitudinal Section A for FCAW Stiffener	25
Assembly 2	35

Figure 4.28: Net Displacement along Longitudinal Section B for FCAW Stiffener	
Assembly 2	36
Figure 4.29: FCAW_Stiff_2 -Net Improvement at Location A	38
Figure 4.30: FCAW_Stiff_2 -Net Improvement at Location B	38
Figure 4.31: FCAW_Stiff_2 -Net Improvement at Location T	39
Figure 5.1: Lincoln STT Process	41
Figure 5.2: Sample ID #1 – 0.035" Dia. Wire, C02 Gas, Program 127	43
Figure 5.3: Sample ID #2 – 0.035" Dia. Wire, C02 Gas, Program 131	43
Figure 5.4: Sample ID #3 – 0.035" Dia. Wire, C25 Gas, Program 127	44
Figure 5.5: Sample ID #4 – 0.035" Dia. Wire, C25 Gas, Program 131	44
Figure 5.6: Sample ID #5 – 0.045" Dia. Wire, C02 Gas, Program 133	45
Figure 5.7: Sample ID #6 – 0.045" Dia. Wire, C02 Gas, Program 133	45
Figure 5.8: Sample ID #7 – 0.045" Dia. Wire, C02 Gas, Program 129	46
Figure 5.9: Sample ID #8 – 0.045" Dia. Wire, C02 Gas, Program 117	46
Figure 5.10: Sample ID #9 – 0.045" Dia. Wire, C25 Gas, Program 118	47
Figure 5.11: Sample ID #10 – 0.045" Dia. Wire, C25 Gas, Program 133	47
Figure 5.12: Sample ID #11 – 0.045" Dia. Wire, C25 Gas, Program 129	48
Figure 5.13: Benchmark STT – 0.035" Dia. Wire, C02 Gas, Program 131	49
Figure 5.14: Benchmark FCAW	49
Figure 6.1: Pulse/Pulse Waveform	50
Figure 6.2: Pulse Arc/Short Arc Waveform	51
Figure 6.3: Spray Arc/Pulse Arc	51
Figure 6.4: Stiffened Panel Distortion Measurement Grid	52
Figure 6.5: Tacked Stiffener Test Assembly on Test Frame	53
Figure 6.6: Plate Marked for Distortion Readings	53
Figure 6.7: Net Displacement along Longitudinal Section A for Benchmark Assembly1	58
Figure 6.8: Net Displacement along Longitudinal Section T for Benchmark Assembly1	58
Figure 6.9: Net Displacement along Longitudinal Section C for Benchmark Assembly1	59
Figure 6.10: Net Displacement along Longitudinal Section B for Benchmark Assembly1	59
Figure 6.11: Net Displacement along Longitudinal Section A for Benchmark Assembly2	60
Figure 6.12: Net Displacement along Longitudinal Section T for Benchmark Assembly2	60
Figure 6.13: Net Displacement along Longitudinal Section C for Benchmark Assembly2	61
Figure 6.14: Net Displacement along Longitudinal Section B for Benchmark Assembly2	61
Figure 6.15: Net Displacement along Longitudinal Section A for Benchmark Assembly3	62
Figure 6.16: Net Displacement along Longitudinal Section T for Benchmark Assembly3	62
Figure 6.17: Net Displacement along Longitudinal Section C for Benchmark Assembly3	63
Figure 6.18: Net Displacement along Longitudinal Section B for Benchmark Assembly3	63
Figure 6.19: Net Displacement along Longitudinal Section A for Benchmark Assembly4	64
Figure 6.20: Net Displacement along Longitudinal Section T for Benchmark Assembly4	64
Figure 6.21: Net Displacement along Longitudinal Section C for Benchmark Assembly4	65
Figure 6.22: Net Displacement along Longitudinal Section B for Benchmark Assembly4	65
Figure 6.23: Net Displacement along Longitudinal Section A for Benchmark Assembly4	
(Repeat)	66
Figure 6.24: Net Displacement along Longitudinal Section T for Benchmark Assembly4	
(Repeat)	66

Figure 6.25: Net Displacement along Longitudinal Section C for Benchmark Assembly4	
(Repeat)	67
Figure 6.26: Net Displacement along Longitudinal Section B for Benchmark Assembly4	
(Repeat)	67
Figure 6.27: Net Displacement along Longitudinal Section A for Benchmark Assembly5	68
Figure 6.28: Net Displacement along Longitudinal Section T for Benchmark Assembly5	68
Figure 6.29: Net Displacement along Longitudinal Section C for Benchmark Assembly5	69
Figure 6.30: Net Displacement along Longitudinal Section B for Benchmark Assembly5	69
Figure 6.31: Net Displacement along Longitudinal Section A for Assembly6	70
Figure 6.32: Net Displacement along Longitudinal Section T for Assembly6	70
Figure 6.33: Net Displacement along Longitudinal Section C for Assembly6	71
Figure 6.34: Net Displacement along Longitudinal Section B for Assembly6	71
Figure 6.36: Net Displacement along Longitudinal Section B	73
Figure 6.37: Net Displacement along Longitudinal Section T	73
Figure 6.38: Net Improvement along Longitudinal Section A	74
Figure 6.39: Net Improvement along Longitudinal Section B	75
Figure 6.40: Net Improvement along Longitudinal Section T	75
Figure 6.41: Weld Profile, Benchmark Assembly 1 (Conventional CV)	76
Figure 6.42: Weld Profile, Benchmark Assembly 2 (Pulse on Pulse)	77
Figure 6.43: Weld Profile, Benchmark Assembly 3 (Pulse on Short)	77
Figure 6.44: Weld Profile, Benchmark Assembly 4 (Pulse on Spray)	78
Figure 6.45: Weld Profile, Benchmark Assembly 5 (Pulse)	78
Figure 6.46: Cross-section Showing Penetration Profile of Benchmark Assembly1	79
Figure 6.47: Cross-section Showing Penetration Profile of Benchmark Assembly2	79
Figure 6.48: Cross-section Showing Penetration Profile of Benchmark Assembly3	80
Figure 6.49: Cross-section Showing Penetration Profile of Benchmark Assembly4	80
Figure 6.50: Cross-section Showing Penetration Profile of Assembly5	81
Figure 7.1: Stiffened Panel Distortion Measurement Grid	86
Figure 7.2: Net Displacement along Longitudinal Section A for T-MCAW Stiffener	
Benchmark Assembly	89
Figure 7.3: Net Displacement along Longitudinal Section B for T-MCAW Stiffener	
Benchmark Assembly	90
Figure 7.4: Net Displacement along Longitudinal Section T for T-MCAW Stiffener	
Benchmark Assembly	90
Figure 7.5: Net Displacement along Longitudinal Section A for T-MCAW Stiffener	
Assembly 2	91
Figure 7.6: Net Displacement along Longitudinal Section B for T-MCAW Stiffener	
Assembly 2	92
Figure 7.7: T-MCAW_Stiff_2 -Net Improvement at Location A	94
Figure 7.8: T-MCAW_Stiff_2 -Net Improvement at Location B	94
Figure /.9: T-MCAW_Stift_2 -Net Improvement at Location T	95
Figure 7.10: Net Displacement along Longitudinal Section A for Benchmark T-MCAW	0.5
Stiffener Assembly vs. Benchmark FCAW Stiffener Assembly	96
Figure 7.11: Net Displacement along Longitudinal Section B for Benchmark T-MCAW	0.5
Stiffener Assembly vs. Benchmark FCAW Stiffener Assembly	96

Figure 7.12:	Net Displacement along Longitudinal Section T for Benchmark T-MCAW
-	Stiffener Assembly vs. Benchmark FCAW Stiffener Assembly
Figure 7.13:	Net Improvement along Longitudinal Section A for T-MCAW Stiffener
C	Assembly vs. FCAW Stiffener Assembly with 10 000lbs Tension
Figure 7.14:	Net Improvement along Longitudinal Section B for T-MCAW Stiffener
U	Assembly vs. FCAW Stiffener Assembly with 10 000lbs Tension
Figure 7.15:	Net Improvement along Longitudinal Section T for T-MCAW Stiffener
U	Assembly vs. FCAW Stiffener Assembly with 10 000lbs Tension
Figure 7.16:	T-MCAW Weld Profile
Figure 7.17:	T-MCAW Weld Profile with 92Ar/8C02
Figure 7.18:	T-MCAW Weld Profile with 85Ar/15C02 100
Figure 7.19:	Stiffened Panel Distortion Measurement Grid 102
Figure 7.20:	Vertical Displacement of Ten Base Plates for Location A 111
Figure 7.21:	Vertical Displacement of Ten Base Plates for Location B 112
Figure 7.22:	Vertical Displacement of Ten Base Plates for Location C 112
Figure 7.23:	Vertical Displacement Comparison of Plate 3 and Plate 7 for Location A 113
Figure 7.24:	Vertical Displacement Comparison of Plate 3 and Plate 7 for Location B 113
Figure 7.25:	Vertical Displacement Comparison of Plate 3 and Plate 7 for Location C 114
Figure 7.26:	Vertical Displacement Comparison of Plate 8 and Plate 9 for Location A 114
Figure 7.27:	Vertical Displacement Comparison of Plate 8 and Plate 9 for Location B 115
Figure 7.28:	Vertical displacement Comparison of Plate 8 and Plate 9 for Location C 115
Figure 7.29:	Net Displacement along Longitudinal Section E for FCAW Benchmark
	Assembly Plate 7 121
Figure 7.30:	Net Displacement along Longitudinal Section F (Stiffener) for FCAW
	Benchmark Assembly Plate 7 122
Figure 7.31:	Net Displacement along Longitudinal Section G for FCAW Benchmark
	Assembly Plate 7 122
Figure 7.32:	Net Displacement along Longitudinal Section E for T-MCAW Benchmark
	Assembly Plate 8 123
Figure 7.33:	Net Displacement along Longitudinal Section F (Stiffener) for T-MCAW
	Benchmark Assembly Plate 8
Figure 7.34:	Net Displacement along Longitudinal Section G for T-MCAW Benchmark
	Assembly Plate 8
Figure 7.35:	Net Displacement along Longitudinal Section E for FCAW 10 000lbs Tension
D ' D O C	Assembly Plate 3
Figure /.36:	Net Displacement along Longitudinal Section F (Stiffener) for FCAW 10 000lbs
F. 7 .77	Tension Assembly Plate 3
Figure /.3/:	Net Displacement along Longitudinal Section G for FCAW 10 000lbs Tension
F' 7.20	Assembly Plate 3
Figure 7.38:	Net Displacement along Longitudinal Section E for T-MCAW 10 000lbs Tension
Eigene 7 20	Assembly Plate 9
rigure /.39:	10 000lbs Tansian Assambly Plate 0
Eigure 7 40.	Not Displacement along Longitudinal Section C for T MCAW 10 0001br
Figure 7.40:	Tension Assembly Dista 0
	120 ICHISION ASSEMIDIY FIALE 9

Figure	7.41: Net Improvement along Longitudinal Section E for T-MCAW Plate 8 vs.	
U	FCAW Plate 7 (No Tension)	130
Figure	7.42: Net Improvement along Longitudinal Section F (Stiffener) for T-MCAW	
	Plate 8 vs. FCAW Plate 7 (No Tension)	130
Figure	7.43: Net Improvement along Longitudinal Section G for T-MCAW Plate 8 vs.	
	FCAW Plate 7 (No Tension)	131
Figure	7.44: Net Improvement along Longitudinal Section E for T-MCAW Plate 9	
	(10 000lbs tension) vs. FCAW Plate 7 (No Tension)	132
Figure	7.45: Net Improvement along Longitudinal Section F (Stiffener) for T-MCAW	
	Plate 9 (10 000lbs tension) vs. FCAW Plate 7 (No Tension)	133
Figure	7.46: Net Improvement along Longitudinal Section G for T-MCAW Plate 9	
	(10 000lbs tension) vs. FCAW Plate 7 (No Tension)	133
Figure	7.47: Vertical Displacement with Respect to Average along Longitudinal	
	Section E for FCAW Plate 7 (No Tension)	134
Figure	7.48: Vertical Displacement with Respect to Average along Longitudinal	
	Section E for T-MCAW Plate 9 (10 000lbs Tension	135
Figure	7.49: Welding Procedure Data Sheet for FCAW	142
Figure	7.50: Welding Procedure Data Sheet for T-MCAW	143

LIST OF TABLES

Table 2.1: Project Metrics	3
Table 4.1: Test Summary	. 18
Table 4.2: Test Summary	. 30
Table 4.3: STT_Stiff_1_Benchmark Distortion Data	. 30
Table 4.4: FCAW_Stiff_1_Benchmark Distortion Data	. 31
Table 4.5: FCAW_Stiff_2 Distortion Data	. 31
Table 4.6: FCAW_Stiff_2 Net Displacement	. 37
Table 5.1: STT Procedure Development Parameters	. 42
Table 6.1: Test Summary	. 54
Table 6.2: Benchmark Assembly 1-Distortion Data	. 54
Table 6.3: Benchmark Assembly 2-Distortion Data	. 55
Table 6.4: Benchmark Assembly 3-Distortion Data	. 55
Table 6.5: Benchmark Assembly 4-Distortion Data	. 56
Table 6.6: Benchmark Assembly 4 (Repeat)-Distortion Data	. 56
Table 6.7: Benchmark Assembly 5-Distortion Data	. 57
Table 6.8: Assembly 6-Distortion Data	. 57
Table 6.9: Resulting Weld Sizes	. 82
Table 6.10: Travel Speeds	. 82
Table 6.11: Heat Input	. 82
Table 6.12: Displacement Values	. 82
Table 7.1: Test Summary	. 87
Table 7.2: T-MCAW Stiff 1 Benchmark Distortion Data	. 87
Table 7.3: T-MCAW Stiff 2 92Ar/8C02 Distortion Data	. 88
Table 7.4: T-MCAW Stiff 3 85Ar/15C02 Distortion Data	. 88
Table 7.5: T-MCAW Stiff 4 75Ar/25C02 Distortion Data	. 89
Table 7.6: T-MCAW Stiff 2 Net Displacement	. 93
Table 7.7: Coating Thickness Readings for Stiffener 7	103
Table 7.8: Coating Thickness Readings for Plate 7	104
Table 7.9: Coating Thickness Readings for Stiffener 3	105
Table 7.10: Coating Thickness Readings for Plate 3	106
Table 7.11: Coating Thickness Readings for Stiffener 8	107
Table 7.12: Coating Thickness Readings for Plate 8	108
Table 7.13: Coating Thickness Readings for Stiffener 9	109
Table 7.14: Coating Thickness Readings for Plate 9	110
Table 7.15: Test Summary	116
Table 7.16: FCAW Benchmark Plate 7 Distortion Data before Welding.	116
Table 7 17: FCAW Benchmark Plate 7 Distortion Data after Welding	117
Table 7.18: T-MCAW Benchmark Plate 8 Distortion Data before Welding	117
Table 7 19: T-MCAW Benchmark Plate 8 Distortion Data after Welding	118
Table 7 20: FCAW Plate 3 Distortion Data, No-Tension before Welding	118
Table 7.21: FCAW Plate 3 Distortion Data, Tension before Welding	119
Table 7.22: FCAW Plate 3 Distortion Data, Tension after Welding	119
Table 7.23: T-MCAW Plate 9 Distortion Data No-Tension before Welding	120
Table 7 24: T-MCAW Plate 9 Distortion Data Tension before Welding	120
Tuese (21) I merrir i nue / Distortion Dun, Tension Serore (County management)	

Table 7.25:	T-MCAW Plate 9 Distortion Data, Tension after Welding	121
Table 7.26:	Net Improvement, T-MCAW Plate 8 vs. FCAW Plate 7 (No Tension)	129
Table 7.27:	Net Improvement, T-MCAW Plate 9 vs. FCAW Plate 7 (No Tension)	132
Table 7.28:	Vertical Displacement with Respect to Average for FCAW Plate 7	
	(No Tension)	135
Table 7.29:	Vertical Displacement with Respect to Average for T-MCAW Plate 9	
	(10 000lbs Tension)	136
Table 7.30:	Porosity Counts for Plate 7	137
Table 7.31:	Porosity Counts for Plate 3	138
Table 7.32:	Porosity Counts for Plate 8	139
Table 7.33:	Porosity Counts for Plate 9	140

ACRONYMS

AWS	American Welding Society
CTTD	Contact Tip To Work
CV	Constant Voltage
DCEN	Direct Current Electrode Negative
DCEP	Direct Current Electrode Positive
FCAW	Flux Cored Arc Welding
FSW	Friction Stir Welding
GMAW	Gas Metal Arc Welding
HSLA	High Strength Low Alloy
IPM	Inches Per Minute
MCAW	Metal Core Arc Welding
MMC	Marinette Marine Corp.
NSRP	National Shipbuilding Research Program
RMD	Regulated Metal Deposition
SAW	Submerged Arc Welding
STT	Surface Tension Transfer
T-GMAW	Tandem Gas Metal Arc Welding
WFS	Wire Feed Speed
WPDS	Welding Procedure Data Sheet

1. INTRODUCTION

1.1 Problem to be Addressed

Ships such as the LCS feature thin light weight steel and aluminum alloy materials that are highly sensitive to welding induced distortion that when not controlled can lead to costly fit-up and rework efforts throughout the build process. Shipyards such as MMC are looking for cost effective solutions and/or technologies that can be incorporated into their existing panel line operations to achieve distortion within tolerances and avoid costly fit-up and rework.

In addition to the distortion issues, there are requirements in LCS construction that welding be performed over the primed plates and stiffeners. The FCAW process using special electrode formulations have been traditionally used to produce sound welds over primed surfaces. The FCAW procedures utilize slow welding speeds for degasification of the decomposing primer. The slow welding speeds result in higher heat inputs that generate increased levels of distortion in thin panel structures as well as low production rates. In commercial shipbuilding it is common practice to remove the primers prior to welding by grit blasting and then reapply after the welding operations are complete. This method of construction adds time and money to the build process and shipyards are always looking for productive methods to effectively weld over primers to reduce their cost.

To increase the productivity of welding, processes with high deposition rates need to be employed; however, to reduce distortion high travel speeds and low heat inputs are required. Welding processes that provide a suitable balance between productivity and distortion control need to be considered as well as provide a significant return on the equipment investment. In addition, methods that increase the level of restraint in the structure need to be investigated that have the potential to reduce distortion in thin panel structures. The following methods that are proposed have the potential to resolve the above issues without sacrificing quality, and these are: Controlled Dip Transfer Welding (including ESAB Superpulse Technology), Tandem Gas Metal Arc Welding (T-GMAW), and Mechanical Tensioning.

1.2 Scope

Many shipyards use the GMAW and FCAW processes for various applications in their panel lines. In some cases, shipyards have investigated laser or laser-hybrid joining technologies to further improve productivity and improve subsequent block fit-up efforts through distortion reduction. However, these processes are quite costly (initial cost of equipment and extensive fitup efforts) and it is for this reason most shipyards are reluctant to use these in production, although many European shipyards have had great success to-date. The T-GMAW technology proposed in this study is a low cost solution with a greater margin of return on the investment, compared to other advanced joining methods. The weld metal deposition rates achieved with this process are typically twice that compared to single electrode welding. Greater deposition rates require higher travel speeds to complete a weld of a given size, and therefore higher productivity rates are achieved. Higher travel speeds result in lower heat inputs and less welding induced distortion. T-GMAW has the potential to enhance welding speeds while welding over primers without introducing weld defects.

1

Metal cored electrodes for GMAW are manufactured using a mild steel jacket with a core of specifically selected iron and other metal powders and alloys. The current is carried only by the thin sheath surrounding the electrode, thereby increasing resistive heating of the electrode, resulting in increased deposition rates and thus higher productivity. Stabilizers and arc enhancers are added to its core, typically providing a wider operating window compared to welding with solid wires. Formulations have been developed specifically for welding over primers.

Aluminum's coefficient of thermal expansion is approximately six times greater that that of steel, and therefore makes it much more susceptible to welding induced distortion in comparison. Processes such as Pulse/Pulse and other SuperPulse GMAW modes need to be investigated to reduce heat input and distortion as well as improve productivity rates.

2. **PROJECT OBJECTIVES**

The main objective of the proposed investigation is to utilize recent technological advancements in GMAW processes and consumable design to improve productivity rates and reduce the construction costs of both commercial and naval vessels in US shipyards. Secondly, mechanical tensioning may reduce distortion in thin panel structures and therefore reduce the cost of fit-up and rework efforts.

The benefits of this project to the sponsor group vary based upon the interests of the sponsoring organization. The NSRP will expect to increase the quality and economy of ship construction completed in US shipyards. This will both make naval platforms and commercial vessels more affordable and improve the structural integrity of ships built in US shipyards. The sponsoring shipyards would expect to be able to reduce their fabrication costs through higher productivity and lower rework and scrap rates.

The shipyard sponsors will appreciate that the proposed welding equipment can be easily implemented into any of their existing panel lines that use the SAW, FCAW, or GMAW process, with minimal modifications.

The project metrics are shown in Table 2.1

Metric	"As-is" Baseline	Project Goal	Tracking and Reporting Plan
Weld Completion	Current Weld Metal	Increase Weld	Select and evaluate current welding
Rates for Aluminum	Deposition Rates and	Completion	procedures for panel line welding of same
and Non-primed steel	Travel Speeds per Unit	Rates by 200%	materials and thickness; Compare results
structures	Length of Weld		with those using the proposed
			technologies.
Reduce Distortion	Current Levels	Reduce by 30%	Collect data from shipyards on current
Through Heat Inputs			levels of distortion. Produce welds in lab
and Tension Loads			with new welding processes and
			mechanical tensioning and measure
			resulting distortion
Extend Travel Speeds	Current Levels	Increase by up to	Collect data from shipyards on current
for Welding Over		50%	practice for welding over primers. Produce
Primers			welding procedures with T-GMAW process
			and compare productivity rates.

 Table 2.1: Project Metrics

3. TASK 1: DEFINITION OF BENCHMARK WELDING PROCEDURES

The first task of the project was to collect and analyze results of the current practices for welding on "thin" panel steel and aluminum structures (5mm thick), including welding over primers. The welds produced using the benchmark procedures were used to compare the differences in both distortion and productivity. The GMAW-STT, FCAW, and SAW procedures provided by MMC were used as a guideline for producing benchmark procedures for welding on the 5mm thick steel plate with the GMAW-STT, FCAW, and SAW processes. Procedures were not provided by MCC for welding of aluminum. The desired fillet weld size was known so typical parameters for the wire size were used (based on manufacturers recommendations) and travel speed was fine tuned to achieve the desired fillet weld size.

The first step was to build a structural steel frame large enough to support two 4' x 10' plates and accommodate the tensioning apparatus and the load cell. The steel frame needed to be flat and sitting level on the shop floor. A frame was also custom built to support the 16' beam to form the welding gantry. An upgraded motor was installed to run on the beam capable of travel speed up to 100 inches per minute. Fixturing was designed and fabricated for mounting of all the required control boxes, feeders, servo motors and slides, welding torch, and wire spool holders. Figure 3.1 illustrates the welding gantry and frame set-up.

Figure 3.1: Welding Gantry and Frame Set-up

Distortion readings are taken using a self leveling laser to project a beam across the plate, level with the working surface. Reading are taken for every point on the plate (plate distortion measurement grid) and recorded on a spreadsheet for use in creating tables, charts, and ANSYS models of the plate and the displacements. Measurements are also taken of the frame for reference to corresponding location on the plate for accurate displacement results. Distortion readings were taken of all benchmark plates before and after welding for later comparison with tension cases. Figure 3.2 shows the self-leveling laser level and Figure 3.3 shows the beam projected on the steel rule.

Figure 3.2: Self Leveling Laser Level

Figure 3.3: Beam Projected on Steel Rule

Plates for the benchmark procedures were first fitted and tacked to form a butt joint with no preparation and no gap. Chalklines were made at predetermined spacing along the width and length of the plate. Figure 3.4 shows the plate distortion measurement grid used for the benchmark plate as well as the tension cases. The benchmark plates were free to rest on the test frame during welding.

Figure 3.4: Plate Layout

Stiffener Assemblies for the benchmark procedures were fitted and tacked so that the stiffener was at 90 degrees with the base plate. Tack welds were performed at predetermined points for all assemblies so there was no variance in displacement readings due to the tack welding operations. Stiffeners were fit tight to the base plate so there were no gaps. Points were marked on the base plate and stiffener following the distortion matrix grid for taking distortion readings. Figure 4.22 (FCAW 10" Base Plate), Figure 6.4 (Aluminum) and Figure 7.19 (FCAW 4' Base Plate) show the plate distortion measurement grid used for the benchmark plate as well as the tension cases. The benchmark plates were free to rest on the test frame during welding. Figures 3.5 to 3.7 show the various assembly layouts.

Figure 3.5: Stiffener Assembly Layout (Steel)

Figure 3.6: Stiffener Assembly Layout (Aluminum)

Figure 3.7: Stiffener Assembly Layout (Steel 10' Base Plate)

Welding parameters used for the benchmark procedures have been summarized in the form of welding procedure data sheets as shown in Figures 3.8 through 3.11. Distortion results are discussed later in the report as the benchmark distortion data is used to compare with the distortion results of the tension cases.

						WEI DING PPC	CEDUP	F		WPDS NO -	SAW 1C		2.761 4.11 1002/33
	-		-			DATA SH	FFT	-		DATE:	10-10-08		Pour
-77	BN	T Fleet	lech	nolog	У	BAIAON			6	DATE.	10-00-00		
Compa	ny Name	BMT Flee	t Technolo	gy						Ref. Standard	ds:		
ddres	s:	311 Legg	et Drive K	anata, Onta	ario K2K	1Z8				Ref. WPS:			
					_								
Velding	g Proces	ses: 1	SAW			Pulsed: Yes	⊻ No	2				Pulsed:	Yes No
snielair	ng Gas I	ype:	IN/A						lain	Canfinuation	• • D====#	0	
osition	15:	Manu	al	Semi-Au	ito 🗸	Machine	Auto		Join	Configuration	1 & Pass/La	ayer Seque	nce
oint Tu	s moue.	V Butt			orner		Edge						
Penetra	ation:	Com	lete	Partial	ETT=		Fillet						
Backing	a:	Material:	N/A			Thickness: N/A				0.082			
Backgo	uaina:	Yes	Method:	N/A					\rightarrow	1			
buongouging.		No	Depth:	N/A				-	las		<u> </u>		
Electrode Extension:		sion: contact ti	to work o	listance = 1	9mm to 2	5mm		2.	wp.				
lozzle	Diamete	er(s): 7/8"								0.062*			
lux Cla	assificati	on: F9A6-EM	2-M2-H8							Root Opening	is 1/16" Ma	aximum	
ungste	en Electr	ode: Type:	N/A			Dia.:	N/A						
Cleanin	ng Proce	dures As Requi	ed						SAV	/ both side	s - no ba	ick gouge	9
CSA W	186 Reb	ar Direc	Splice	Inc Inc	lirect Splic	e 🗌 Lap Spli	ce						
spiice	Type.	Reba	to Structu	ural Membe	r Only								
dentifi	ication o	of Base Materia	(for CSA	W186 indica	ate carbon	equivalent, max. pl	nosphorus	& sulphu	r content)				
Part			S	pecification	& Grade				Thickr	ness or Dia.		Special	Requirements
1	MIL-S-2	4645 HSLA 80								3/16"			
	MIL-S-2	4645 HSLA 80						_	1	3/16"			
dentifi	ication o	of Filler Materia						_					
Pro	cess		Trade N	ame		(Classificatio	on		Group		Filler Trea	tment
SAW		ESAB SpoolAr	95			MIL-100S-1							
Noldin	a Daran	L					_						
Thick-	Weld	leters	Pass	Welding	Dia	Wire Feed Speed	Current	Volt	Current	Welding	Burn-Off	Gas Flow	Heat Input
ness	Size/	Laver	Number	Process	(in.)	(IPM)	A	V	Polarity	Speed (IPM	Rate	Rate	(kJ/in)
(In.)	ETT						1000)	()	(CFH	
• •							Side	1					
	2/16	1	1	SAW	3/32	N/A	320	30	DCEP	24	N/A	N/A	24.0
2/16	3/16						Side	2					
3/16		1	1	SAW	3/32	N/A	350	30	DCEP	24	N/A	N/A	26.3
3/16													
3/16													
3/16													
3/16													horization
3/16	eatment							CWB	Acceptant	e	Co	mpany Aut	
3/16 leat tr	reatment	t : Ambient		Interpasst	emp.max.:	N/A		CWB	Acceptant	e	Co	mpany Aut	
3/16 leat tr	reatment it min:	: Ambient		Interpasst	emp.max.: emp.min.:	N/A N/A		CWB	Acceptanc	e	Coi	mpany Aut	
3/16 leat tr	reatment It min:	: Ambient		Interpasste Interpasste	emp.max.: emp.min.:	N/A N/A		CWB	Acceptan	20	Coi	mpany Aut	
3/16 leat tr	reatment it min:	: Ambient		Interpasste Interpasste	emp.max.: emp.min.:	N/A N/A		CWB	Acceptan	20	Coi	mpany Aut	
3/16 leat tr	eatment It min:	Ambient		Interpasst Interpasst	emp.max.: emp.min.:	N/A N/A		CWB	Acceptanc	20	Coi	mpany Aut	
3/16 leat tr	eatment It min:	: Ambient		Interpasst	emp.max.: emp.min.:	N/A N/A		CWB	Acceptanc	;e	Coi	mpany Aut	
3/16 Heat tr	reatment It min:	Ambient		Interpasst	emp.max.: emp.min.:	N/A N/A		CWB	Acceptan	;e	Co	mpany Aut	
3/16 leat tr	reatment it min:	Ambient		Interpasst	emp.max.: emp.min.:	N/A N/A		CWB	Acceptan	;e	Co	mpany Aut	
3/16 leat tr	eatment it min:	Ambient		Interpasst	emp.max.: emp.min.:	N/A N/A		CWB	Acceptan	:e	Co	mpany Aut	
3/16 Heat tr	eatment tt min:	: Ambient		Interpasst	emp.max.:	N/A N/A		CWB	Acceptan	e	Co	mpany Aut	

Figure 3.8: Welding Procedure Data Sheet for Benchmark SAW

HA.	~					WELDING PRO	CEDUR	E		WPDS NO .	FCAW-2F		GWB Form 160E
-	BN	IT Flee	t Tech	nolog	У	DATA SH	EET	-		DATE:	26-Jun-08		Rev.:
Compa	ny Name	: BMT Fle	BMT Fleet Technology							Ref. Standard	s:		
ddres	s:	311 Leg	311 Legget Drive Kanata, Ontario K2K 1Z8							Ref. WPS:			
/eldine	a Proces	ses:	FCAW			Pulsed: Yes	V No	-	-			Pulsed:	Yes N
hieldir	ng Gas T	ype: 1	100% C0	2				2					
ositio	ns:	Horizont	al (2F)						Joint	Configuration	& Pass/La	ayer Seque	nce
roces	s Mode:	Man	ual	Semi-Au	to 🔽	Machine	Auto						
oint Ty	ype:	Butt	⊻ Te	e L C	Corner		Edge		1.5.8	T₁ ←			
enetra	ation:	L Com	Complete Partial ETT= Fillet									1	s
lackor	g: puging:	Yes	Material: IN/A Inickness: N/A									/	V
uonge	Juging.	No	Depth:	N/A								/	
lectro	de Exten	sion: contact	tip to work o	listance = 1	9mm to 2	5mm					/		
lozzle	Diamete	r(s): 7/8" to 3	/4"								/		
lux Cl	assificati	on: N/A	1										
ungst	en Electr	ode: Type:	N/A	las ude h	and when	Dia.:	N/A			I I			
Jeanir	ng Proced	Jures As Requ	mea: Chipp	nig, wire bi	usn, wire	wilder							T.
								2	12.4.25	192		3	
CSA W	/186 Reb	ar Dire	ct Splice	Inc	lirect Splic	e Lap Sol	ice	2	12 - 2 - 2 - 2	3. 3. Walt			1
Splice	Туре:	Reb	ar to Struct	ural Membe	r Only	PP		Pan St			121200		The second second
dentif	ication o	f Base Materi	al(for CSA	W186 indica	ate carbor	n equivalent, max. p	hosphorus	& sulphu	r content)				
Part			S	pecification	& Grade				Thickr	less or Dia.		Special	Requirement
1	HSLA 8	0			_				1	3/16"			
11	HSLA 8	0								3/16"			
dentif	ication o	f Filler Materi	al							-		F10. T	
Pro	ocess		Trade Name Classific							Group		Filler Trea	itment
-CAW		Trimark				MIL-TOTTM							
-										-			
Neldir	ng Paran	neters											
Thick-	Weld		Pass	Welding	Dia.	Wire Feed Speed	Current	Volt	Current	Welding	Burn-Off	Gas Flow	Heat Inpu
ness //n	Size/	Layer	Number	Process	(in.)	(IPM)	A	V	Polarity	Speed (IPM	Rate	Rate (CEH	(kJ/in
(211				B	aco Matorial in	Primod (Conditiv		/	()	(0.11	
3/16	3/16	1	1	FCAW	.045	350	210	30	DCEP	25	N/A	40	15
			-										
			_		Ba	se Material wit	h Primer	Remov	/ed				
3/16	3/16	1	1	FCAW	.045	320	205	27.5	DCEP	28	N/A	40	12
leat t	reatment							CWB	Acceptanc	e	Co	mpany Aut	thorization
Prehea	at min:	Ambient		Interpasst	emp.max.	: N/A	4			0			
				Interpasst	emp.min.:	N/A	4						
											6		
							1				6		
							1						

Figure 3.9: Welding Procedure Data Sheet for Benchmark FCAW

WELDING PROCEDUR DATA SHEET								WPDS NO.: STT-035-C02-2F DATE: 12/19/2007 Rev.:							
Company Name: BMT Fleet Technology								Ref. Standards:							
Address	s:	311 Le	get Drive K	anata, Ont	ario K2K	1Z8	Ref. WPS:								
Welding	Proces	202	GMAW-S	TT		Pulsed: Yes	V No					Pulsed:	Yes No		
Shieldin	ng Gas T	vpe: 1	1 GMAW-STT Puised: Tes V No 100% CO2									Langear C			
Positions: Horizontal (2F)								Join	Configuration	& Pass/La	ayer Seque	nce			
Process Mode: Manual Semi-Auto Machine Auto							RESIDE			10 31	STANK IS	Long and Copy of			
Joint Type:		L But	t ⊻Te	e 🗹 (Corner	🗹 Lap			T						
Penetra	ition:	Cor	Complete Partial ETT= I Fillet							•			State Sector		
Backing	g:	Materia	Material: N/A Thickness: N/A									1	s		
Backgo	uging:	Yes	Method:	N/A			1. Salar				/	-			
		🗌 No	Depth:	N/A			Sec. M.				/	Ser Balanto			
Electro	de Exten	sion: contact	tip to work o	listance = 3	3/8"						/		EN ALS		
Nozzle	Diamete	r(s): 1/2" to	5/8"								/				
Flux Cla	assificati	on: N/A	1							K					
Tungste	en Electr	ode: Type:	N/A			Dia.:	N/A	-		1	1				
Cleanin	g Proced	dures Wilre w	heel												
								2				3	Τ,		
004 14	400 D-h									1111111	nin rea		•		
Splice	Туре:	ar Din Ret	ect Splice oar to Structu	Ind La Ind	direct Splic er Only	e 🔄 Lap Spli	ce		1 Anna	語る見聞	Maller -				
Identifi	cation o	of Base Mater	ial(for CSA	W186 indic	ate carbon	equivalent, max. pl	nosphorus	& sulphu	r content)						
Part			Sp	ecification	& Grade			Thickness or Dia. Special Requirements							
1	HSLA 8	0						3mm to 5mm							
11	HSLA 8	0						3mm to 5mm							
Identifi	cation o	of Filler Mater	ial					-							
Pro	cess		Trade N	ame	_	(Classificati	tion Group Filler Treatment							
GMAW-STT ESAB Spoolarc 95 ER100S-1															
								_							
									_						
Weldin	g Param	neters													
ness (mm)	Weld Size/ ETT	Layer	Pass Number	Process	Dia. (in.)	(IPM)	A	Volt	Polarity	Speed (IPM)	number	Gas Flow Rate (CFH	Heat Input (kJ/in)		
Т	3.0	1	1	STT	.035	210	115	16	DCEP	13	131	30	8.5		
T	4.8	1	1	STT	.035	210	115	16	DCEP	10	131	30	11.0		
Heat tr	eatment	:						Ac	ceptance		Co	mpany Au	thorization		
Prehea	t min:	Ambient		Interpass	temp.max.	N/A									
				Interpass	temp.min.:	N/A									
Power	Source:	Lincoln Por	verwave 45	5											
Arc Co	ontrol: 8	.u, irim: 1.0													
Run-in Work a	: 100ipr ingle: 4	n, burnback: 0 degrees, Ti	0.03sec, pr avel angle:	o degrees	5sec S										
5mm pi	late is the	e limitation of	this process	Use of S	TT transfe	r on plate									
above	5mm in t	hickness may	result in lac	k of fusion	or lack of p	penetration.									
Contac	t tip to w	ork distance	of 3/8" must l	be maintair	ned to achi	eve					-				
acceptable weld profile and penetration profile.											Date:				

Figure 3.10: Welding Procedure Data Sheet for Benchmark STT

WELDING PROCEDU							CEDUR	WPDS NO.: CV-Argon-2F					
			+ Toob	nalac		DATA SH	EET	DATE: 02/04/2008				8	Rev.:
See.	BI	Fiee	et lecr	inolog	јУ								
Company Name: BMT Fleet Technology									Ref. Standard	s:			
Address: 311 Legget Drive Kanata, Ontario K2K 1Z8							Ref. WPS:						
Velding	Process	Ses'	GMAW			Pulsed: Yes	V No		<u> </u>			Pulsed:	Yes No
Shieldir	g Gas T	vpe: 1	1 100% Araon										
osition	ns:	Horizont	al (2F)				Joint Configuration & Pass/Laver Sequence						
roces	s Mode:	Man	ual	Semi-Au	to 🗸	Machine	Auto	1.10	THE REAL		NV. 93	US PHILDIN	
Joint Ty	/pe:	Butt	∠ Te	e 🗹	Corner	🗹 Lap	Edge		101	- T. +	1		
Penetration:		Com	Complete Partial ETT= Fillet							~		-	1
Backing	J:	Material:	N/A			Thickness: N/A						/	s
Backgo	uging:	Yes	Method:	N/A								/	
leetre	de Euten		Deptn:	IN/A	14"		_					/	
lozzla	Diameter	r(c): Tandem	Torch Nova	listance - a	1.4						/		
lux Cl	assificatio	on: N/A	1010111100								1		
Tungst	en Electro	ode: Type:	N/A			Dia.:	N/A						SUSTRACTS
Cleanin	g Proced	dures Stainles	s wire whee	I, stainless	sanding d	isk, stainless wire b	rush as	-	12200		1		
		required	required									5	T,
CSA W	186 Reb	ar Direc	ct Splice	Inc Inc	lirect Splic	e 🗌 Lap Spli	ce						
Splice	rype:	L Reba	ar to Structu	Iral Membe	r Only							1 and contract	
dentifi	cation o	f Base Materia	al(for CSA \	W186 indica	ate carbon	equivalent, max. pl	hosphorus	& sulphu	r content)	Di		0	
Part			Sp	ecification	& Grade				I hick	ness or Dia.		Specia	Requirements
	5086 H1	116								Smm			
Identif	SUGO HI	f Eiller Materi	al							Jillin			
Dro	case	riner materi	Trade N	ame			lassificatio	0		Group		Filler Trea	atment
GMAW	0035	OK Autrod 53	56	ame		ER5356	Jiasomoatik			Cidup		1 1101 1101	atmont
0111/111		OR Addod 00				LINGOOD							
					_								
Weldin	g Param	neters											
Thick-	Weld	1200000	Pass	Welding	Dia.	Wire Feed Speed	Current	Volt	Current	Welding	Data Set	Gas Flow	Heat Input
ness (mm)	Size/	Layer	Number	Process	(mm)	(IPM)	A	v	Polarity	Speed (IPM		Kate	(kJ/in)
T	5	1	1	GMAW	12	600	259	19.8	DCEP	50	5	45	6.2
	-			- China (11									
			1										
_													
			1										
			1										
leat tr	eatment	:						Ac	ceptance	(I I I I I I I I I I I I I I I I I I I	Co	mpany Au	thorization
Prehea	t min:	Ambient	nbient Interpasstemp.max.: N/A										
				Interpasstemp.min.: N/A			1						
Power	Source:	ESAB Aristo	mig 450				1						
Drive l	Jnit: Me	ch/Mek											
	nt: ESA	B U8											
Penda	Angle: 4	0°, Travel Ang	le: 0°										
Penda Work /	m Info:	mig/Mag, Dip	Spray, Al/I	vig, Ar, 1.2	mm								
Penda Work / Progra							1						
Penda Work / Progra													
Penda Work / Progra													
Penda Work / Progra											Date:		

Figure 3.11: Welding Procedure Data Sheet for Benchmark GMAW of Aluminum

4. TASK 2: DEVELOP OPTIMUM TENSION PROFILES 2

4.1 Design of Tension System

The first step in this task was to determine the hole locations required for tensioning the plates. The concern was tear out and plastic deformation of the plate material so modeling was done with different dimensions for (a) and (b) shown on Figure 4.1. The air cylinder has a maximum capacity of 30 tonne; however, it was expected that actual loads would be closer to 10 tonnes. Figure 4.2 shows modeling results for the lateral displacement for different values of (a) and (b) using a 10 tonne tension load. The lateral displacement using a 3" value for a and a 3" value for b was approximately 0.2mm, very low, so it was decided to use a value of 2.5" for both a and b dimensions. Once this was established the clevices were fabricated along with the 1" diameter pins.

Measurements Start Here, Taken On Top Edge of Plate at X=0

Figure 4.1: Hole Locations in Plate for Mechanical Tensioning

Figure 4.2: Distance from Plate Edge vs. Lateral Displacement for Hole Locations

Figures 4.3 through 4.5 show the operation of the clevice system in how they attach to the plates through hardened 1" diameter pins and locate the plates in proper orientation for welding while providing desired tension load. A load cell is connected to the clevice at the bottom of Figure 4.5 and is connected to a laptop computer to provide tension load information. The tension load is monitored during welding and the load adjusted as required to maintain a constant load throughout the welding of the plate.

Figure 4.3: Side View of Clevice with Plate under Tension

Figure 4.4: Top View of Clevice with Plate under Tension

Figure 4.5: View of Entire Plate Assembly under Tension

4.2 Plate Assembly Results

All test plates to be welded are marked up as illustrated in Figure 4.6. Plate distortion (vertical displacement) measurements are recorded for every point between A to L along the width and 1 to 22 along the length, using a laser level. For all plates to be welded under mechanical tension, plate distortion data is recorded at all three stages:

- 1. Before welding
- 2. Before welding under tension
- 3. After welding

For benchmark plates in absence of tension, data is recorded before and after completion of welding. In addition, a similar measurement grid was setup for the test support frame upon which the plate to be welded are supported.

Figure 4.6: Plate Distortion Measurement Grid

Table 4.1 summarizes the test cases that were analyzed as part of the on-going research. Applied tension loads under 10, 000 lbs achieved a straightening effect on plates that were distorted. Tension loading was increased at increments of 5,000 lbs to determine the optimal tension load profile.

Specimen	Side	Applied Tension	Test
No.		(lbs)	Туре
1	1, 2	-	Danahmark
6	1, 2	-	Dencimark
2	1	10,000	
3	1, 2	15,000	Mechanical
5	1, 2	15,000	Tensioning
4	1,2	30,000	

 Table 4.1: Test Summary

Figure 4.7, 4.8 and 4.9 illustrate the benefits of mechanical tensioning on straightening and alignment of plates to be welded. In Figures 4.7 and 4.8, a high low situation up to approximately 1" exists between the plates to be welded. With the use of less than 10,000lbs of tension, the plate are brought within tolerance and ready for welding as shown in Figure 4.9. Figure 4.10 shows the vertical displacement of the plates with no tension and Figure 4.11 shows the vertical displacement of the plates under 10,000lbs of tension.

Figure 4.7: Fit-Up of Plates before Pre-Tensioning

Figure 4.8: High Low in Plates before Pre-Tensioning

Figure 4.9: Fit-Up of Plates after Pre-Tensioning

Figure 4.10: Plate Distortion Measurement Grid

Figure 4.11: Plate Distortion Measurement Grid

In order to measure the effectiveness of mechanical tensioning approach, the net displacement of each marked point on the plate with respect to the corresponding point on the test frame is compared at each of the above stages. Figures 4.12 and 4.13 compare the net displacement along transverse and longitudinal sections for benchmark Plate 1-Side 1. Figure 4.14 is a 3-dimensional ANSYS model that shows the net displacement after welding for Plate 1-Side 1. Additional plots are provided in **Appendix A**.

Figure 4.12: Net Displacement along Transverse Section A11 for Plate 1-Side1

Figure 4.13: Net Displacement along Longitudinal Section F for Plate 1-Side1

Figure 4.14: Net Plate Deformation after Welding Plate 1-Side1

Figures 4.15 and 4.16 compare the net displacement along transverse and longitudinal sections for Plate 4-Side 1. Figures 4.17 and 4.18 are 3-dimensional ANSYS models that show the net displacement before and after welding for Plate 4-Side 1. Additional plots are provided in **Appendix A**.

Figure 4.15: Net Displacement along Transverse Section A11 for Plate 4-Side1

Figure 4.16: Net Displacement along Longitudinal Section F for Plate 4-Side1

Figure 4.17: Net Plate Deformation (No Weld No Tension - Weld under Tension)

Figure 4.18: Net Plate Deformation after Welding (Tension Case) (No Weld with Tension-Weld under Tension)

4.3 Volume due to Plate Deformation

The original measured displacement values were offset by value of 10 to account for negative values. Figures 4.19 and 4.20 compare the displacement data before and after offset correction. These offset corrected values are used to calculate the area under the curve.

Figure 4.19: Net Displacement along Transverse Section A1 for Plate 6-Side1

Figure 4.20: Offset Net Displacement along Transverse Section A1 for Plate 6-Side1

The approach used to calculate plate volume due to plate geometry is as follows:

- 1. Calculate area under each of the segment of the curve (before and after welding) Ex: Area segment AB = Area AXZY + Area AXB
- 2. Total area under the curve AL is summation of areas under segment AB, BC, CD, DE, EF,FG, GH, HI, IJ, JK and KL respectively.
- 3. Total volume between transverse sections Total area AL times the spacing between transverse sections A1 and A2 gives.
- 4. Volumes for sections A2 to A22 are calculated using similar approach.
- 5. Total volume generated due to plate geometry is summation of all transverse sectional volumes.
- 6. Plate volumes are calculated before and after welding operation.
- 7. The net change in plate volume is difference in plate volume before and after welding

The results of above approach are illustrated in Figure 4.21.

Figure 4.21: Net Plate Volume

It can be seen that the mechanical tensioning approach as applied to groove welding of high strength steel during panel line operation doesn't seem to provide significant advantage to counter deformation, at least within the methods it's applied in this study. The results are not consistent for the benchmark assemblies or for the tension assemblies. Benchmark plate 1 resulted in a similar 'net volume change' (volume after welding subtracted by volume before welding) of distortion for side one and side two. Plate 6 was a repeated benchmark attempt to determine consistency of results and it resulted in a similar first side result with significantly more 'net volume change' of distortion on the second side. Two separate reading were taken

from side two as shown in Figure 4.21 to determine whether the 'net volume change' distortion results would differ depending on how the plate was buckled; the end results were similar. Plates three and five were performed at 15, 000lbs of tension which was determined to be the best tension profile for this application. Plate three and five show a similar trend in reduction of net displacement after welding compared to net displacement before welding; However, the 'net volume change' of displacement on average is greater than with the benchmark procedures. The best comparison for distortion is probably to compare between the net displacement before welding for side one and the net displacement after welding side two. Using this method the plates would rank in this order from least distortion to greatest distortion:

- 1. Plate 3 (Tension Case)
- 2. Plate 1 (Non Tension)
- 3. Plate 4 (Tension Case)
- 4. Plate 5 (Tension Case)
- 5. Plate 6 (Non Tension))

Further work with a modified tension set-up where the entire width of the plates is tensioned and length of the plates restrained is proposed for future work. The mechanical tension was effective at straightening the seam to be welding, helping with the fit-up operations.

4.4 FCAW Stiffened Panel Assembly (10" Wide Base Plate) Results

Welding of stiffener assemblies was performed using the STT process and FCAW process and the 10" wide base plates for comparison of tension profiles to the benchmark assembly. CSA 300W base plate was used for this comparison to conserve the 4' wide primed HSLA 80 base plate for the final testing.

All the stiffened panels (5mm thick) to be welded were marked up as illustrated in Figure 4.22. Panel distortion (vertical displacement) measurements are recorded for points A, B and T along the width and T1 to T23 along the length, using a laser level. For all plates to be welded under mechanical tension, the distortion data is recorded at all three stages:

- 1. Before welding
- 2. Before welding under tension
- 3. After welding

For benchmark stiffener assembly in absence of tension, data is recorded before and after completion of welding. In addition, a similar measurement grid was setup for the test support frame upon which the stiffener assembly to be welded are supported.

Figure 4.22: Stiffened Panel Distortion Measurement Grid

STT and FCAW techniques were used to set up two benchmark stiffener assemblies. Table 4.2 summarizes the test cases that were analyzed. Tables 4.3 through 4.5 summarize the measured distortion data for stiffener assemblies at locations A and B. The data is color-coded red and yellow to help better visualize the assembly distortion (torsion). The color red indicates a higher distortion compared to color yellow, whereas light green indicates no change in displacement. Additional test data is provided in **Appendix B**.

Stiffener Assembly	Applied Tension (lbs)
STT_Stiff_1_Benchmark	0
FCAW_Stiff_1_Benchmark	0
FCAW_Stiff_2	10,000
FCAW_Stiff_3-worst case	10,000
FCAW_Stiff_4	10,000

 Table 4.2: Test Summary

	Bet	fore We	eld			After Weld				
Disp	olacemer	<mark>nt w.r.t to</mark>	Frame, r	nm		Displacement w.r.t to Frame, mm				
	Α	Т	В	Abs Diff			Α	Т	В	Abs Diff
1	9	67	6.5	2.5		1	6.5	65.5	5	1.5
2	8.5	66.5	6	2.5		2	6.5	65	5	1.5
3	6.5	65	4.5	2		3	5.5	64	3.5	2
4	6	63.5	4	2		4	5.5	63	4	1.5
5	5	62	3	2		5	5	61.25	3.5	1.5
6	3.5	60.5	1.5	2		6	3.5	59.5	2.5	1
7	2.5	59.25	0.5	2		7	3	58.5	2	1
8	2	58	0.5	1.5		8	2.5	57.5	1.5	1
9	1.5	56.75	0.5	1		9	2	56.5	2	0
10	0	55.5	0	0		10	1.5	55.5	1.5	0
11	1	55.25	0	1		11	2	55.5	1.5	0.5
12	1	55	0.5	0.5		12	2.5	55.5	2	0.5
13	1.5	54.5	0.5	1		13	2.5	55	2	0.5
14	1	54	0.5	0.5		14	2	54.5	2	0
15	1.5	54.25	0.5	1		15	2.5	54.75	2.5	0
16	2.5	54.5	1.5	1		16	3.5	55	3	0.5
17	3	55	1.5	1.5		17	4	55.25	3	1
18	3.5	55.5	2.5	1		18	4.5	55.5	4	0.5
19	5.5	56.5	3.5	2		19	5.5	56.25	5	0.5
20	6.5	57.5	5	1.5]	20	6.5	57	6	0.5
21	8	58.5	6	2	1	21	6.5	57.5	6	0.5
22	9	59	7	2	1	22	6.5	58	6.5	0
23	10	59.5	8	2	1	23	7.5	58.5	7.5	0

 Table 4.3:
 STT_Stiff_1_Benchmark Distortion Data

	Before Weld							
Displacement w.r.t to Frame, mm								
	Α	Т	В	Abs Diff				
1	7	55	9.5	2.5				
2	6.5	55	9	2.5				
3	5	54	7.5	2.5				
4	4.5	53	6.5	2				
5	3.5	51.75	5.5	2				
6	2.5	50.5	3.5	1				
7	2	50	3	1				
8	1.5	49.5	2	0.5				
9	1.5	49	1.5	0				
10	0.5	48.5	0.5	0				
11	1	49	1	0				
12	1.5	49.5	1.5	0				
13	1.5	49.5	1.5	0				
14	1	49.5	1.5	0.5				
15	2	50.5	2	0				
16	2.5	51.5	3	0.5				
17	3	52.5	3.5	0.5				
18	3.5	53.5	5	1.5				
19	5	55	6	1				
20	6.5	56.5	7.5	1				
21	7.5	58	8.5	1				
22	8	58.75	9	1				
23	8.5	59.5	9.5	1				

After Weld									
	Displacement w.r.t to Frame, mm								
	Α	Т	В	Abs Diff					
1	3.5	53	9	5.5					
2	3	53	8.5	5.5					
3	2.5	52.25	7	4.5					
4	2	51.5	6.5	4.5					
5	2	50.5	5.5	3.5					
6	2	49.5	4	2					
7	2	49.25	3.5	1.5					
8	2	49	3	1					
9	2	48.75	2.5	0.5					
10	2	48.5	2	0					
11	2.5	49	2	0.5					
12	3	49.5	2.5	0.5					
13	3	49.5	2.5	0.5					
14	2.5	49.5	2	0.5					
15	3	50.25	2.5	0.5					
16	3	51	3	0					
17	3	51.5	3.5	0.5					
18	3.5	52	4.5	1					
19	4.5	53	5	0.5					
20	4.5	54	6	1.5					
21	3.5	54.5	5	1.5					
22	4.5	55	5	0.5					
23	5	55.5	5.5	0.5					

Table 4.5: FCAW_Stiff_2 Distortion Data

Before Weld						
D	isplacem	ent w.r.t	to Frame	, mm		
	Α	Т	в	Abs Diff		
1	10	57.5	10	0		
2	9	57	8	1		
3	7	56.25	6.5	0.5		
4	6.5	55.5	5.5	1		
5	5	54	4.5	0.5		
6	4	52.5	3	1		
7	3	51.5	2	1		
8	2	50.5	1.5	0.5		
9	1.5	50	1	0.5		
10	1	49.5	0.5	0.5		
11	1.5	50	0.5	1		
12	1.5	50.5	0.5	1		
13	2	50.5	1	1		
14	1.5	50.5	1	0.5		
15	2	51.25	1	1		
16	2	52	1.5	0.5		
17	2.5	52.75	1.5	1		
18	4	53.5	2.5	1.5		
19	5.5	54.75	3	2.5		
20	7	56	4.5	2.5		
21	8	58	4.5	3.5		
22	8.5	58.5	6	2.5		
23	9.5	59	7	2.5		

Tension No Weld								
Displacement w.r.t to Frame, mm								
	Α	Т	В	Abs Diff				
1	5	54.5	4	1				
2	5	54.5	4	1				
3	4	53.5	3	1				
4	4.5	52.5	3	1.5				
5	3.5	51.25	2	1.5				
6	2	50	0.5	1.5				
7	1	49.5	0	1				
8	0.5	49	0	0.5				
9	0	48.5	0	0				
10	0	48	0	0				
11	0.5	48.75	0	0.5				
12	0.5	49.5	0	0.5				
13	1	49.25	0	1				
14	0.5	49	0	0.5				
15	1	50.25	0	1				
16	1	51.5	0	1				
17	1	51.75	0.5	0.5				
18	2.5	52	1.5	1				
19	3.5	53.75	2.5	1				
20	4.5	55.5	3.5	1				
21	2.5	56	2	0.5				
22	2.5	57	2	0.5				
23	2.5	58	2	0.5				

After Weld								
Di	splacem	ent w.r.t t	o Frame,	mm				
	Α	Т	в	Abs Diff				
1	3	52.5	2.5	0.5				
2	3	52.5	2.5	0.5				
3	2	51.5	1.5	0.5				
4	3	50.5	2.5	0.5				
5	2.5	49.75	2	0.5				
6	1.5	49	1	0.5				
7	1.5	48.75	1	0.5				
8	1.5	48.5	1	0.5				
9	1.5	48.5	1	0.5				
10	1.5	48.5	1	0.5				
11	1.5	49	1	0.5				
12	2	49.5	1.5	0.5				
13	2	49.75	1.5	0.5				
14	2	50	1	1				
15	2.5	50.5	2	0.5				
16	2.5	51	2	0.5				
17	2.5	51.5	2	0.5				
18	3.5	52	2.5	1				
19	5	53	3.5	1.5				
20	5	54	3.5	1.5				
21	3	56	1.5	1.5				
22	3	56.25	1.5	1.5				
23	3	56.5	1.5	1.5				

Figures 4.23 through 4.26 illustrate the net displacements for two benchmark stiffener assemblies. It can be seen that of the two benchmark stiffener assemblies, net distortion is higher using FCAW technique than STT technique; also these distortions are more prominent along the edges. Therefore it would be more beneficial to use the mechanical tensioning approach in conjunction with FCAW technique to better demonstrate the ability of mechanical tensioning to counter plate distortion.

Figure 4.23: Net Displacement along Longitudinal Section A for STT Stiffener Benchmark Assembly

Figure 4.24: Net Displacement along Longitudinal Section B for STT Stiffener Benchmark Assembly

Figure 4.25: Net Displacement along Longitudinal Section A for FCAW Stiffener Benchmark Assembly

Figure 4.26: Net Displacement along Longitudinal Section B for FCAW Stiffener Benchmark Assembly

In order to measure the effectiveness of mechanical tensioning approach, the net displacement of each marked point on the assembly (Figure 4.22) with respect to the corresponding point on the test frame is compared at each of the above stages. Figures 4.27 and 4.28 compare the net displacement along the longitudinal sections for FCAW Stiffener Assembly subjected to a tension load of 10,000 lbs. additional plots are provided in **Appendix B**.

Figure 4.27: Net Displacement along Longitudinal Section A for FCAW Stiffener Assembly 2.

Figure 4.28: Net Displacement along Longitudinal Section B for FCAW Stiffener Assembly 2

4.4.1 Net Improvement

The distortion data in Table 4.6 and Figures 4.29 through 4.31 compare the overall net improvement achieved in controlling distortion under applied tension with respect to the benchmark assembly. The negative values, color coded blue indicates location where tensioning has been effective to counter distortion due to welding. Also cells color coded light green indicate no change in distortion and yellow indicates a marginal increases in distortion. Additional plots and tables are provided in **Appendix B**.

Net Displacement, mm								
Displacement w.r.t to Frame, mm								
	Α	Т	В	Abs Diff				
1	-7	-5	-7.5	0.5				
2	-6	-4.5	-5.5	0.5				
3	-5	-4.75	-5	0				
4	-3.5	-5	-3	0.5				
5	-2.5	-4.25	-2.5	0				
6	-2.5	-3.5	-2	0.5				
7	-1.5	-2.75	-1	0.5				
8	-0.5	-2	-0.5	0				
9	0	-1.5	0	0				
10	0.5	-1	0.5	0				
11	0	-1	0.5	0.5				
12	0.5	-1	1	0.5				
13	0	-0.75	0.5	0.5				
14	0.5	-0.5	0	0.5				
15	0.5	-0.75	1	0.5				
16	0.5	-1	0.5	0				
17	0	-1.25	0.5	0.5				
18	-0.5	-1.5	0	0.5				
19	-0.5	-1.75	0.5	1				
20	-2	-2	-1	1				
21	-5	-2	-3	2				
22	-5.5	-2.25	-4.5	1				
23	-6.5	-2.5	-5.5	1				

Table 4.6: FCAW_Stiff_2 Net Displacement

Net Displacement, mm								
	Benchmark							
	Α	Т	В	Abs Diff				
1	-3.5	-2	-0.5	3				
2	-3.5	-2	-0.5	3				
3	-2.5	-1.75	-0.5	2				
4	-2.5	-1.5	0	2.5				
5	-1.5	-1.25	0	1.5				
6	-0.5	-1	0.5	1				
7	0	-0.75	0.5	0.5				
8	0.5	-0.5	1	0.5				
9	0.5	-0.25	1	0.5				
10	1.5	0	1.5	0				
11	1.5	0	1	0.5				
12	1.5	0	1	0.5				
13	1.5	0	1	0.5				
14	1.5	0	0.5	1				
15	1	-0.25	0.5	0.5				
16	0.5	-0.5	0	0.5				
17	0	-1	0	0				
18	0	-1.5	-0.5	0.5				
19	-0.5	-2	-1	0.5				
20	-2	-2.5	-1.5	0.5				
21	-4	-3.5	-3.5	0.5				
22	-3.5	-3.75	-4	0.5				
23	-3.5	-4	-4	0.5				

Net Impro	Net Improvement, mm						
Ber	Benchmark						
-3.5	-3	-7					
-2.5	-2.5	-5					
-2.5	-3	-4.5					
-1	-3.5	-3					
-1	-3	-2.5					
-2	-2.5	-2.5					
-1.5	-2	-1.5					
-1	-1.5	-1.5					
-0.5	-1.25	-1					
-1	-1	-1					
-1.5	-1	-0.5					
-1	-1	0					
-1.5	-0.75	-0.5					
-1	-0.5	-0.5					
-0.5	-0.5	0.5					
0	-0.5	0.5					
0	-0.25	0.5					
-0.5	0	0.5					
0	0.25	1.5					
0	0.5	0.5					
-1	1.5	0.5					
-2	1.5	-0.5					
-3	1.5	-1.5					

Figure 4.29: FCAW_Stiff_2 -Net Improvement at Location A.

Figure 4.30: FCAW_Stiff_2 -Net Improvement at Location B.

Figure 4.31: FCAW_Stiff_2 -Net Improvement at Location T

From the data presented it can be concluded that the mechanical tensioning approach as applied to fillet welding of high strength steel stiffener assemblies does provide significant advantage to counter deformation. Figures 4.29 through 4.31 demonstrate this with the majority of values showing as negative vertical displacement, negative is a positive effect on reducing distortion. Table 4.6 also shows the effect of mechanical tensioning on distortion with the blue indicating locations where tensioning has been effective to counter distortion due to welding. Comparing the net displacements for FCAW_Stiff_2 (10,000lbs tension) vs. FCAW Stiff_1 (Benchhmark), a reduction in distortion of 144% results from the use of mechanical tensioning.

In summary, mechanical tensioning of plate assemblies did not result in a significant reduction in distortion, with results inconsistent to one another. The mechanical tensioning of stiffener assemblies resulted in a significant reduction in distortion on the stiffened panel assemblies, with clear and repeatable results.

The results of mechanical tensioning of aluminum stiffener assemblies are discussed in Task 4.

5. TASK 3: DEVELOP OPTIMIZED WELDING PROCEDURE AND GUIDELINES FOR CONTROLLED DIP TRANSFER WELDING OF STEEL STRUCTURES

5.1 Surface Tension Transfer

This report provides the results on the independent evaluation of the surface tension transfer (STT) process conducted at BMT Fleet Technology for the application of distortion control on thin panel high strength fillet welds used in light weight combatants. The objective in this task was to determine the operating limitations of the process as well as provide guidance on its potential use in regular production.

STT is a modified short circuit transfer (also known as controlled dip transfer) using inverter power source technology with waveform control to provide a better welding solution than traditional short circuiting GMAW. Unlike conventional GMAW power sources, the STT power source does not use a voltage control knob. Current controls are used to adjust the heat independent of the wire feed speed, so changes in electrode extension do not affect heat. Low heat input welds can therefore be produced without overheating or even burning through thin plate. Distortion is also limited due to the low heat input. Figure 5.1 shows what is happening to the consumable wire at the welding arc at different stages of the waveform. Marinette Marine Corp. (MMC) is currently using this process for some applications and provided data sheets for use as benchmark and reference data. A series of welds were performed using 0.035" diameter wire and 0.045" diameter wire with 100% C02 shielding gas and 75Ar / 25 C02 shielding gas. Welding procedure data sheets and user guidelines have been established for procedures that successfully achieved acceptable penetration profile, acceptable weld profile, acceptable arc stability, and operating characteristics. The power source used was a Lincoln Powerwave 455 with pre-loaded software. Wavedesigner 2000 software can be used to modify waveforms in an effort to optimize them for specific applications. There is limited support available for wavedesigner software through Lincoln Electric, and efforts to modify the waveform did not result in improved arc characteristics. For this reason, the preloaded software was used with no modification of the waveform other than adjustment to the synergic controls such as trim and arc control. It is possible that other Lincoln STT power sources such as the Lincoln Invertec STT II (used by MMC) will allow for further fine tuning of the waveform or even broader parameter range, however this is an assumption and such procedures shall be evaluated and qualified prior to use with alternative power sources. The welding procedure data sheets may need to be adjusted as well for synergic controls if used on other types of controlled dip transfer power supplies, such as with Miller Electric's Regulated Metal Deposition (RMD) technology.

Figure 5.1: Lincoln STT Process

Table 5.1 shows the various wire/gas and program combinations evaluated with the STT process. The ranking system takes into account operating characteristics of the arc and resulting bead profile. A five star ranking is the best and a one star ranking is the worst. The current MMC procedure uses 0.035" diameter wire with CO2 shielding gas to produce a 1/8" fillet weld size on 3/8" thick plate. This is an unlikely weld size to achieve with STT transfer and maintain adequate penetration and fusion. The STT transfer is recommended for fillet welds on material thickness up to 3/16." All procedure development welding was performed on 5mm plate thickness (slightly greater than 3/16"). The wire feed speeds shown are optimal for the wire size and achieving acceptable arc characteristics and weld profile for producing a 1/8" fillet weld. Of all the combinations experimented with, Sample ID #9 with 0.045" diameter wire, C25 (75Ar / 25C02) shielding gas, and program 118 resulted in the greatest flexibility with wire feed speeds ranging from 125 to 175 inches per minute. Acceptable operating characteristics and weld profiles were achieved with both wire diameters; however, the penetration profile of the welds performed with the 0.045" diameter wire exhibited better penetration and fusion. Both five star ranking welds (C02 and C25 shielding gas) for the 0.045" diameter wires resulted in good penetration and fusion, with good bead profile. The only five star ranking weld with the 0.035" diameter wire resulted in a penetration profile that was not acceptable.

WFS (IPM)	Trim	Arc C	Avg. Amps	wire θ	Gas	Program	T.S. (IPM)	Weld Profile	Penetration /Fusion	Weld Size	Sample ID#	Ranking* (five star)
200	0.8	7.5	100	0.035	C02	111				1/8		***
200	0.7	7.5	100	0.035	C02	131	10.9	Good	Acceptable	1/8	2	****
200	0.7	7.5	100	0.035	C02	127	9.9	Good	Not acceptable	1/8	1	****
200	0.8	6	110	0.035	C25	112	N/A	Not Desirable	N/A	1/8		**
200	1.4	9	118	0.035	C25	131	9.9	Convex	Not acceptable	1/8	4	***
200	1.5	9.5	118	0.035	C25	127	10.3	Good	Minimal	1/8	3	****
125	1.4	7.5	135	0.045	C02	117	13.8	Good	Acceptable	1/8	8	****
125	1.18	8.5	130	0.045	C02	129	11.5	Not Desirable	Acceptable	1/8	7	**
125	1.25	5	135	0.045	C02	133	11.6	Good	Acceptable	1/8	6	****
110	1.15	5	120	0.045	C02	133	10	Good	Acceptable	1/8 +	5	****
125	1.4	7.5	135	0.045	C25	118	13.8	Good	Acceptable	1/8 +	9	****
150	1.4	7.5	150	0.045	C25	118	Tria	al to determin	e operating rang	e of proc	edure.	****
175	1.44	5	175	0.045	C25	118	Trial to determine operating range of procedure.				****	
125	1.5	10	140	0.045	C25	133	11.5	Convex	Acceptable	1/8 +	10	**
125	1.5	10	140	0.045	C25	129	13.2	Good	Acceptable	1/8	11	***

Macro sections were extracted from each of the welds deposited with the parameters in Table 5.1, and are shown in Figures 5.2 to 5.12. Specimens 1 and 4 as seen in Figure 5.2 and Figure 5.5 have lack of fusion along the horizontal leg of the fillet. Convexity is apparent for specimens 4, 7, and 10 as seen in Figures 5.2, 5.5 and 5.8. Porosity was not observed in any of the welded test specimens and spatter was minimal. In conclusion, 0.045" diameter consumable wire using C02 or C25 shielding gas appears to be the most suitable choice for welding 1/8" fillet welds on 5mm t-stiffeners. No less than 125IPM of wire feed speed should be used on this procedure to ensure adequate root penetration and sidewall fusion.

Figure 5.2: Sample ID #1 – 0.035" Dia. Wire, C02 Gas, Program 127

Figure 5.3: Sample ID #2 – 0.035" Dia. Wire, C02 Gas, Program 131

Figure 5.4: Sample ID #3 – 0.035" Dia. Wire, C25 Gas, Program 127

Figure 5.5: Sample ID #4 – 0.035" Dia. Wire, C25 Gas, Program 131

Figure 5.6: Sample ID #5 – 0.045" Dia. Wire, C02 Gas, Program 133

Figure 5.7: Sample ID #6 – 0.045" Dia. Wire, C02 Gas, Program 133

Figure 5.8: Sample ID #7 – 0.045" Dia. Wire, C02 Gas, Program 129

Figure 5.9: Sample ID #8 – 0.045" Dia. Wire, C02 Gas, Program 117

Figure 5.10: Sample ID #9 – 0.045" Dia. Wire, C25 Gas, Program 118

Figure 5.11: Sample ID #10 – 0.045" Dia. Wire, C25 Gas, Program 133

Figure 5.12: Sample ID #11 – 0.045" Dia. Wire, C25 Gas, Program 129

Recommendations for STT welding are provided in **Appendix C** along with preferred welding procedure data sheets (WPDS's) for welding with both .035" and .045" diameter ER100S-1 electrodes and C02 and C25 gases.

Distortion measurements were taken of welded t-stiffeners using benchmark parameters, before and after welding in the as-welded condition (see Table 4.3, Figures 4.23 and 4.24). The distortion results of the STT welded t-stiffener was compared to distortion results of the FCAW welded t-stiffener (see Table 4.3, Figures 4.25 and 4.26). Mechanical tensioning was not performed using the STT process, because after reviewing the distortion results of the assembly in the as welded condition it was felt that little advantage would be gained by use of mechanical tensioning. Penetration profiles of the two benchmark processes, STT and FCAW, are seen in Figures 5.13 and 5.14, respectively. Notice the increased sidewall fusion of the weld performed with the FCAW process vs. the STT process. Typical heat input values for the STT process are less than 9 kj/in compared to 12 kj/in for the FCAW process when depositing a 1/8" fillet weld size.

BMT Fleet Technology Limited

Figure 5.13: Benchmark STT – 0.035" Dia. Wire, C02 Gas, Program 131

Figure 5.14: Benchmark FCAW

6. TASK 4: DEVELOP OPTIMIZED WELDING PROCEDURES AND GUIDELINES FOR ADVANCED PULSE TRANSFERS FOR ALUMINUM WELDING

6.1 Aluminum Welding with Advanced Processes

This report provides the results on the evaluation and comparison of the ESAB superpulse technology (pulse on pulse, pulse on spray, and pulse on short circuit) with conventional CV and pulse modes of metal transfer for the application of distortion control on aluminum thin panel fillet welds used in light weight combatants. The objective in this task was to develop optimized welding procedures and guidelines for superpulse welding of aluminum structures and compare the distortion results of superpulse with conventional CV and standard pulse processes. The secondary objective was to determine if baseline distortions can be further reduced with the use of mechanical tensioning.

Pulse/pulse technology was created to provide a GMAW solution for aluminum welding that made the process less difficult than standard pulse and therefore required less operator skill. Unlike standard pulse welding, pulse/pulse uses a sequence of varying pulse wave shapes to crate a bead shape and appearance similar to the Gas Tungsten Arc Welding (GTAW) process. Pulse/pulse was primarily designed for welding on aluminum and stainless steels. It utilizes low amperage in one phase for heat reduction and higher amperage in the other phase for enhanced penetration. The phases are named primary and secondary. A typical pulse/pulse waveform is shown in Figure 6.1.

pulse / pulse

Figure 6.1: Pulse/Pulse Waveform

The Aristo SuperPulse is ESAB's latest development for GMAW that gives access to enhanced welding productivity in an easy to operate system. It is an extension to the pulse/pulse concept with full control over the heat input and arc behavior. The two additional arc modes include pulse arc/short arc, and, spray arc/pulse arc.

6.2 Pulse Arc/Short Arc

The pulse arc/short arc process was developed for welding very thin aluminum and stainless. It utilizes pulse in one phase and short arc in the other phase with very low heat input and a GTAW bead appearance. The phases are called primary and secondary. It can be used in all positions of welding and has low sensitivity to variations in root gap. The process can also be used for root runs from one side in thicker materials without the need for backing. A typical pulse arc/short arc waveform is shown in Figure 6.2.

pulse / short arc

Figure 6.2: Pulse Arc/Short Arc Waveform

6.3 Spray Arc/Pulse Arc

The spray arc/pulse arc process was primarily developed for positional welding of thick materials. It utilizes spray arc transfer in one phase for enhanced penetration and pulse arc in the other phase which serves to cool the weld pool for less heat transfer to the base metal and less distortion. The phases are called primary and secondary. Pulsing in second phase also allows spray type transfer to be achieved in all positions of welding. A typical spray arc/pulse arc waveform is shown in Figure 6.3.

spray arc / pulse

Figure 6.3: Spray Arc/Pulse Arc

6.4 Stiffened Aluminum Panel Assembly

All the stiffened panels (5mm thick) to be welded were marked up as illustrated in Figure 6.4. Panel distortion (vertical) measurements are recorded for points A, B, C and T along the width and T1 to T23 along the length, using a laser level.

For benchmark stiffener assembly in absence of tension, data is recorded before and after completion of welding. In addition, a similar measurement grid was setup for the test support frame upon which the stiffener assembly to be welded are supported.

Figure 6.4: Stiffened Panel Distortion Measurement Grid

Figure 6.5 illustrates a typical test assembly is shown with tacks every 12 inches on the back side. Welding is performed on the other side of the assembly. Care is taken when fitting up assemblies so that all tacked assemblies are identical.

Figure 6.5: Tacked Stiffener Test Assembly on Test Frame

Figure 6.6: Plate Marked for Distortion Readings

Table 6.1 summarizes the benchmark test cases that were analyzed as part of the on-going research. Tables 6.2 through 6.8 summarize the measured distortion data for stiffener assemblies 1 through 5 at locations A, T, C and B respectively. The data is color-coded red and yellow to help better visualize the assembly distortion (torsion). The color red indicates a higher distortion compared to color yellow, whereas light green indicates no change in displacement. The sum of the columns is shown to compare total displacement for a given location along the length of the assembly.

Benchmark Assembly 1	GMAW Conventional CV
Benchmark Assembly 2	GMAW Pulse on Pulse
Benchmark Assembly 3	GMAW Pulse on Spray
Benchmark Assembly 4	GMAW Pulse on Short Circuit
Benchmark Assembly 4 (Repeat)	GMAW Pulse on Short Circuit
Benchmark Assembly 5	GMAW Pulse
Assembly 6 (6000LBS Tension Case)	GMAW Pulse on Spray

	Bet	fore We	eld			After Weld						Net Displacment, mm					
Dis	placemer	nt w.r.t to	Frame, I	mm		Displacement w.r.t to Frame, mm						Displacement w.r.t to Frame, mm					
	Α	Т	В	Abs Diff		Α	Т	В	Abs Diff			Α	Т	В	Abs Diff		
1	6	55.2	5.5	0.5	1	6.5	54.7	4	2.5		1	0.5	-0.5	-1.5	2		
2	6	55.2	5.5	0.5	2	6	54.2	4	2		2	0	-1	-1.5	1.5		
3	5	54.95	4.5	0.5	3	4.5	53.95	3	1.5		3	-0.5	-1	-1.5	1		
4	5	54.7	4.5	0.5	4	5	53.7	3.5	1.5		4	0	-1	-1	1		
5	4.5	54.2	4.5	0	5	5	53.2	4.5	0.5		5	0.5	-1	0	0.5		
6	4	53.7	4	0	6	4.5	52.7	5	0.5		6	0.5	-1	1	0.5		
7	4	53.45	4	0	7	5	52.95	5	0		7	1	-0.5	1	0		
8	4	53.2	4	0	8	5	53.2	5.5	0.5		8	1	0	1.5	0.5		
9	3.5	52.7	3.5	0	9	5	52.95	5.5	0.5		9	1.5	0.25	2	0.5		
10	3	52.2	3	0	10	4.5	52.7	5	0.5		10	1.5	0.5	2	0.5		
11	3.5	52.7	3.5	0	11	5	53.2	5.5	0.5		11	1.5	0.5	2	0.5		
12	4.5	53.2	3.5	1	12	5.5	53.7	6	0.5		12	1	0.5	2.5	1.5		
13	4.5	53.2	3.5	1	13	5.5	53.45	6	0.5		13	1	0.25	2.5	1.5		
14	4	53.2	3.5	0.5	14	5	53.2	6	1		14	1	0	2.5	1.5		
15	4.5	53.45	3.5	1	15	5	53.2	6	1		15	0.5	-0.25	2.5	2		
16	5	53.7	4	1	16	5	53.2	6.5	1.5		16	0	-0.5	2.5	2.5		
17	4	53.7	4	0	17	4.5	53.45	6.5	2		17	0.5	-0.25	2.5	2		
18	3.5	53.7	4	0.5	18	4.5	53.7	6.5	2		18	1	0	2.5	1.5		
19	3.5	53.95	4	0.5	19	5	53.95	7.5	2.5		19	1.5	0	3.5	2		
20	4.5	54.2	4.5	0	20	4.5	54.2	6.5	2		20	0	0	2	2		
21	4	53.7	4.5	0.5	21	3.5	53.2	5	1.5		21	-0.5	-0.5	0.5	1		
22	5	54.7	6	1	22	3.5	53.2	4.5	1		22	-1.5	-1.5	-1.5	0		
23	6.5	55.7	6.5	0	23	4	53.2	4.5	0.5		23	-2.5	-2.5	-2	0.5		
Sum	102		98	9		111.5		122	26.5			9.5		24	26.5		

Table 6.3: Benchmark Assembly 2-Distortion Data

Table 6.4: Benchmark Assembly 3-Distortion Data

Before Weld						After Weld						Net Displacment, mm					
Displacement w.r.t to Frame, mm						[Displace	ment w.r.	t to Fram	e, mm		Displacement w.r.t to Frame, mm					
	Α	Т	В	Abs Diff			Α	Т	В	Abs Diff	1 [Α	Т	В	Abs Diff	
1	3.5	54.2	5	1.5		1	3.5	53.2	3.5	0		1	0	-1	-1.5	1.5	
2	3.5	54.2	5	1.5		2	3.5	53.7	3.5	0	I [2	0	-0.5	-1.5	1.5	
3	3	54.2	4.5	1.5		3	3	53.45	3	0		3	0	-0.75	-1.5	1.5	
4	3.5	54.2	5	1.5		4	3.5	53.2	3.5	0		4	0	-1	-1.5	1.5	
5	4	54.45	5	1		5	4	52.95	5	1		5	0	-1.5	0	0	
6	3.5	54.7	4.5	1		6	3.5	52.7	5	1.5		6	0	-2	0.5	0.5	
7	3.5	54.2	4.5	1		7	4	53.7	6	2		7	0.5	-0.5	1.5	1	
8	3.5	53.7	4	0.5		8	5	54.7	6.5	1.5		8	1.5	1	2.5	1	
9	3.5	53.45	4	0.5		9	6	54.95	7.5	1.5		9	2.5	1.5	3.5	1	
10	2.5	53.2	3.5	1		10	6	55.2	7	1		10	3.5	2	3.5	0	
11	3	53.45	4	1		11	6	55.2	7.5	1.5		11	3	1.75	3.5	0.5	
12	3.5	53.7	4	0.5		12	6.5	55.2	7.5	1		12	3	1.5	3.5	0.5	
13	3.5	53.45	3.5	0		13	6	55.2	7	1		13	2.5	1.75	3.5	1	
14	3.5	53.2	3.5	0		14	5.5	55.2	7	1.5		14	2	2	3.5	1.5	
15	3.5	53.45	4	0.5		15	5.5	54.95	7.5	2		15	2	1.5	3.5	1.5	
16	3.5	53.7	4	0.5		16	5	54.7	7	2		16	1.5	1	3	1.5	
17	3	53.45	3.5	0.5		17	4.5	54.2	6.5	2		17	1.5	0.75	3	1.5	
18	3.5	53.2	3.5	0		18	4.5	53.7	6.5	2		18	1	0.5	3	2	
19	3.5	53.45	3.5	0		19	4.5	54.2	6.5	2		19	1	0.75	3	2	
20	4	53.7	4	0		20	4.5	54.7	6.5	2		20	0.5	1	2.5	2	
21	3.5	53.2	3.5	0		21	3.5	53.7	4.5	1		21	0	0.5	1	1	
22	4	53.7	4	0		22	3.5	53.45	4	0.5		22	-0.5	-0.25	0	0.5	
23	5	54.2	4.5	0.5		23	3.5	53.2	4	0.5		23	-1.5	-1	-0.5	1	
Sum	81		94.5	14.5			105		132.5	27.5			24		38	26	

Table 6.5: Benchmark Assembly 4-Distortion Data

Table 6.6: Benchmark Assembly 4 (Repeat)-Distortion Data

	Be	fore We	eld			After Weld						Net Displacment, mm						
Di	splaceme	nt w.r.t to	Frame, r	nm		Displace	ment w.r.	t to Fram	ie, mm		Displacement w.r.t to Frame, mm							
	Α	Т	В	Abs Diff		Α	Т	В	Abs Diff			Α	Т	В	Abs Diff			
	1 5.5	55.2	4.5	1		1 5.5	54.7	3.5	2		1	0	-0.5	-1	1			
	2 5	55.2	4	1		2 4.5	55.2	3.5	1		2	-1	0	-0.5	0			
	3 4	54.95	3.5	0.5		3 3.5	54.7	2.5	1		3	-1	-0.25	-1	0.5			
	4 4.5	54.7	4	0.5		4 4	54.2	4	0		4	-1	-0.5	0	0.5			
	5 5.5	53.95	4.5	1		5 4	53.45	5.5	1.5		5	-1.5	-0.5	1	2.5			
	64	53.2	4	0		6 4	52.7	5.5	1.5		6	0	-0.5	1.5	1.5			
-	7 3.5	52.95	3.5	0		7 3.5	52.7	6	2.5		7	0	-0.25	2.5	2.5			
	8 3.5	52.7	3.5	0		8 1.5	52.7	6	4.5		8	-2	0	2.5	4.5			
	9 3.5	52.45	3.5	0		9 3.5	52.45	6	2.5		9	0	0	2.5	2.5			
1	03	52.2	3	0	1	0 3.5	52.2	5.5	2		10	0.5	0	2.5	2			
1	1 <u>3.5</u>	52.95	4	0.5	1	1 4	52.95	6	2		11	0.5	0	2	1.5			
1	2 4	53.7	4.5	0.5	1	2 4.5	53.7	6.5	2		12	0.5	0	2	1.5			
1	<mark>3 4</mark> .5	53.7	5	0.5	1	3 5	53.2	7	2		13	0.5	-0.5	2	1.5			
1	4 4.5	53.7	5	0.5	1	4 4.5	52.7	6.5	2		14	0	-1	1.5	1.5			
1	<mark>5</mark> 4.5	53.95	5	0.5	1	5 4	53.2	6.5	2.5		15	-0.5	-0.75	1.5	2			
1	6 5	54.2	5	0	1	6 4	53.7	7.5	3.5		16	-1	-0.5	2.5	3.5			
1	7 <mark>4.5</mark>	54.7	5	0.5	1	7 4	53.7	7	3		17	-0.5	-1	2	2.5			
1	8 <u>5.5</u>	55.2	6	0.5	1	8 4.5	53.7	7.5	3		18	-1	-1.5	1.5	2.5			
1	9 6	55.45	7	1	1	9 5	53.7	8.5	3.5		19	-1	-1.75	1.5	2.5			
2	0 <u>6.5</u>	55.7	8	1.5	2	0 <mark>4.5</mark>	53.7	7.5	3		20	-2	-2	-0.5	1.5			
2	1 <u>6.5</u>	56.2	8	1.5		1 3.5	52.7	5.5	2		21	-3	-3.5	-2.5	0.5			
2	2 7.5	57.2	9	1.5		2 3.5	52.95	5	1.5		22	-4	-4.25	-4	0			
2	3 9	58.2	10.5	1.5		3 4	53.2	5	1		23	-5	-5	-5.5	0.5			
Sum	113.5		120	14.5		92.5		134	49.5			-21		14	39			

Table 6.7: Benchmark Assembly 5-Distortion Data

Table 6.8: Assembly 6-Distortion Data

After Weld

Before Weld													
Disp	Displacement w.r.t to Frame, mm												
	Α	Т	В	Abs Diff									
1	6.5	54.7	7	0.5									
2	5.5	54.7	6.5	1									
3	4	54.45	5	1									
4	4	54.2	5	1									
5	4	53.95	4.5	0.5									
6	4	53.7	4	0									
7	4	53.7	4	0									
8	4	53.7	4	0									
9	4	53.45	3.5	0.5									
10	4	53.2	3	1									
11	4	53.7	3.5	0.5									
12	4.5	54.2	4	0.5									
13	4.5	53.95	4	0.5									
14	4	53.7	3.5	0.5									
15	4.5	53.95	4	0.5									
16	5	54.2	4	1									
17	4.5	54.2	4	0.5									
18	4.5	54.2	4	0.5									
19	5	54.7	4.5	0.5									
20	5	55.2	5	0									
21	4.5	54.7	4	0.5									
22	5.5	5.5 54.7		0									
23	7	54.7	6.5	0.5									
Sum	106.5		103	11.5									

Displacement w.r.t to Frame, mm											
	Α	Т	В	Abs Diff							
1	5.5	54.2	4.5	1							
2	5	54.2	4.5	0.5							
3	3.5	53.7	3	0.5							
4	4	53.2	3.5	0.5							
5	4	52.95	4.5	0.5							
6	3.5	52.7	5	1.5							
7	4	52.95	5	1							
8	4	53.2	5.5	1.5							
9	4.5	53.2	6	1.5							
10	4	53.2	5.5	1.5							
11	4.5	53.7	6	1.5							
12	5	54.2	6	1							
13	5	53.95	6	1							
14	5	53.7	6	1							
15	4.5	53.7	6	1.5							
16	5	53.7	5.5	0.5							
17	4.5	53.45	5.5	1							
18	4.5	53.2	5.5	1							
19	5	54.2	6.5	1.5							
20	4.5	55.2	6	1.5							
21	3	54.2	4.5	1.5							
22	3.5	54.2	4.5	1							
23	4	54.2	5	1							
	100		120	25							

Net Displacment, mm												
Dis	placeme	nt w.r.t to	Frame,	mm								
	A	Т	В	Abs Diff								
1	-1	-0.5	-2.5	1.5								
2	-0.5	-0.5	-2	1.5								
3	-0.5	-0.75	-2	1.5								
4	0	-1	-1.5	1.5								
5	0	-1	0	0								
6	-0.5	-1	1	1.5								
7	0	-0.75	1	1								
8	0	-0.5	1.5	1.5								
9	0.5	-0.25	2.5	2								
10	0	0	2.5	2.5								
11	0.5	0	2.5	2								
12	0.5	0	2	1.5								
13	0.5	0	2	1.5								
14	1	0	2.5	1.5								
15	0	-0.25	2	2								
16	0	-0.5	1.5	1.5								
17	0	-0.75	1.5	1.5								
18	0	-1	1.5	1.5								
19	0	-0.5	2	2								
20	-0.5	0	1	1.5								
21	-1.5	-0.5	0.5	2								
22	-2	-0.5	-1	1								
23	-3	-0.5	-1.5	1.5								
	-6.5		17	35.5								

Figures 6.7 through 6.10 illustrate the net displacements for benchmark stiffener assembly 1 at edge locations A, T, C and B respectively.

Figure 6.7: Net Displacement along Longitudinal Section A for Benchmark Assembly1

Figure 6.8: Net Displacement along Longitudinal Section T for Benchmark Assembly1

Figure 6.9: Net Displacement along Longitudinal Section C for Benchmark Assembly1

Figure 6.10: Net Displacement along Longitudinal Section B for Benchmark Assembly1

Figures 6.11 through 6.14 illustrate the net displacements for benchmark stiffener assembly 2 at edge locations A, T, C and B respectively

Figure 6.11: Net Displacement along Longitudinal Section A for Benchmark Assembly2

Figure 6.12: Net Displacement along Longitudinal Section T for Benchmark Assembly2

Figure 6.13: Net Displacement along Longitudinal Section C for Benchmark Assembly2

Figure 6.14: Net Displacement along Longitudinal Section B for Benchmark Assembly2

Figures 6.15 through 6.18 illustrate the net displacements for benchmark stiffener assembly 3 at edge locations A, T, C and B respectively

Figure 6.15: Net Displacement along Longitudinal Section A for Benchmark Assembly3

Figure 6.16: Net Displacement along Longitudinal Section T for Benchmark Assembly3

Figure 6.17: Net Displacement along Longitudinal Section C for Benchmark Assembly3

Figure 6.18: Net Displacement along Longitudinal Section B for Benchmark Assembly3

Figures 6.19 through 6.22 illustrate the net displacements for benchmark stiffener assembly 4 at edge locations A, T, C and B respectively.

Figure 6.19: Net Displacement along Longitudinal Section A for Benchmark Assembly4

Figure 6.20: Net Displacement along Longitudinal Section T for Benchmark Assembly4

Figure 6.21: Net Displacement along Longitudinal Section C for Benchmark Assembly4

Figure 6.22: Net Displacement along Longitudinal Section B for Benchmark Assembly4

Figures 6.23 through 2.26 illustrate the net displacements for benchmark stiffener assembly 4 (Repeat) at edge locations A, T, C and B respectively. Benchmark Assembly 4 was repeated due to tacks breaking during welding of benchmark assembly 4 starting at approximately the 2200mm region of the assembly.

Distance from Edge, mm

Figure 6.23: Net Displacement along Longitudinal Section A for Benchmark Assembly4 (Repeat)

Figure 6.24: Net Displacement along Longitudinal Section T for Benchmark Assembly4 (Repeat)

Figure 6.25: Net Displacement along Longitudinal Section C for Benchmark Assembly4 (Repeat)

Figure 6.26: Net Displacement along Longitudinal Section B for Benchmark Assembly4 (Repeat)

Figures 6.27 through 6.30 illustrate the net displacements for benchmark stiffener assembly 5 at edge locations A, T, C and B respectively.

Figure 6.27: Net Displacement along Longitudinal Section A for Benchmark Assembly5

Figure 6.28: Net Displacement along Longitudinal Section T for Benchmark Assembly5

Figure 6.29: Net Displacement along Longitudinal Section C for Benchmark Assembly5

Figure 6.30: Net Displacement along Longitudinal Section B for Benchmark Assembly5

Figures 6.31 through 6.34 illustrate the net displacements for stiffener assembly 6 at edge locations A, T, C and B respectively.

Figure 6.31: Net Displacement along Longitudinal Section A for Assembly6

Figure 6.32: Net Displacement along Longitudinal Section T for Assembly6

Figure 6.33: Net Displacement along Longitudinal Section C for Assembly6

Figure 6.34: Net Displacement along Longitudinal Section B for Assembly6

6.5 Comparing Benchmark Aluminum Welding Processes

Figures 6.35 through 6.37 compare the net effectiveness of each of the welding processes in terms of the net displacement along the longitudinal section of each marked point on the assembly (Figure 6.4) with respect to corresponding point on the test frame before and after welding.

Figure 6.35: Net Displacement along Longitudinal Section A

Figure 6.36: Net Displacement along Longitudinal Section B

Figure 6.37: Net Displacement along Longitudinal Section T

Figures 6.38 through 6.40 compare the net improvement of test assembly 6 welded with 6000lb tension load with respect to benchmark assembly 3 after welding. The welding process for benchmark assembly 3 and test assembly 6 were the same (GMAW Superpulse Pulse on Spray). Benchmark assembly 3 was chosen to be reproduced under tension because this was determined to be the worst case scenario for vertical displacement (distortion).

Figure 6.38: Net Improvement along Longitudinal Section A

Figure 6.39: Net Improvement along Longitudinal Section B

Figure 6.40: Net Improvement along Longitudinal Section T

Figures 6.41 through 6.45 show the appearance of the weld beads with the five different processes. As seen in the photos, the superpulse technology produces a very consistent bead profile.

Figure 6.41: Weld Profile, Benchmark Assembly 1 (Conventional CV)

Figure 6.42: Weld Profile, Benchmark Assembly 2 (Pulse on Pulse)

Figure 6.43: Weld Profile, Benchmark Assembly 3 (Pulse on Short)

Figure 6.44: Weld Profile, Benchmark Assembly 4 (Pulse on Spray)

Figure 6.45: Weld Profile, Benchmark Assembly 5 (Pulse)

Figures 6.46 through 6.50 show the cross-section of the assembly with an etched surface demonstrating the penetration profiles of the four benchmark welds. These etched samples were taken from procedure development trials before the actual benchmark test assemblies were welded. The actual benchmark assemblies will remain intact for future reference. The penetration is acceptable for all five welds.

Figure 6.46: Cross-section Showing Penetration Profile of Benchmark Assembly1

Figure 6.47: Cross-section Showing Penetration Profile of Benchmark Assembly2

Figure 6.48: Cross-section Showing Penetration Profile of Benchmark Assembly3

Figure 6.49: Cross-section Showing Penetration Profile of Benchmark Assembly4

Figure 6.50: Cross-section Showing Penetration Profile of Assembly5

Tables 6.9 through 6.12 show comparisons of weld sizes obtained, travel speeds, resulting heat inputs, and displacement values. Weld size values followed by a + symbol indicate that the weld size is larger than the size indicated, and smaller than the next weld size to a 1/16". Heat input values are calculated using average amperage and voltage values. Displacement values are obtained from Tables 6.4 through 6.8. The "Sum Torsion" column refers to the displacement relationship between points A and B after welding compared to points A and B before welding. The value shown in the table is the sum of the absolute difference between locations A and B for points 1 to 23 after welding subtracted by before welding values. A high positive value indicates increased torsion, twisting or uneven lifting of the plate edges. The "Sum Net Displacement" column refers to the sum of the net displacement values from locations A and B for all 23 points. A high positive value indicates increased vertical displacement over the length of the test assembly. A negative value represents less vertical displacement than the original test assembly which is an improvement over the original plate.

Test Assembly	Weld Size (in.)
Benchmark Assembly 1 (CV)	3/16+
Benchmark Assembly 2 (Pulse/Pulse)	1⁄4
Benchmark Assembly 3 (Pulse/Spray)	3/16+
Benchmark Assembly 4 (Pulse/Short)	1⁄4
Benchmark Assembly 5 (Pulse)	3/16+

Table 6.9: Resulting Weld Sizes

Table 6.10: Travel Speeds

Test Assembly	Travel Speed (IPM)
Benchmark Assembly 1 (CV)	50
Benchmark Assembly 2 (Pulse/Pulse)	30
Benchmark Assembly 3 (Pulse/Spray)	35
Benchmark Assembly 4 (Pulse/Short)	25
Benchmark Assembly 5 (Pulse)	46

Table 6.11: Heat Input

Test Assembly	Heat Input (KJ/IN)
Benchmark Assembly 1 (CV)	6.2
Benchmark Assembly 2 (Pulse/Pulse)	9.1
Benchmark Assembly 3 (Pulse/Spray)	7.9
Benchmark Assembly 4 (Pulse/Short)	7.3
Benchmark Assembly 5 (Pulse)	7.2

Table 6.12: Displacement Values

Test Assembly	Torsion (mm)	Sum Net Displacement
		(mm)
Benchmark Assembly 1 (CV)	+17.5	+33.5
Benchmark Assembly 2 (Pulse/Pulse)	+16.0	-23.0
Benchmark Assembly 3 (Pulse/Spray)	+13.0	+62.0
Benchmark Assembly 4 (Pulse/Short)	+40.0	+157.0
Benchmark Assembly 4 Repeat	+35.0	-7.0
(Pulse/Short)		
Benchmark Assembly 5 (Pulse)	+25.0	+47
Assembly 6 (6000lbs Tension,	+13.5	+10.5
Pulse/Spray)		

6.6 Summary of Results for Advanced Aluminum Welding Process

From the data presented, it can be concluded that the superpulse-pulse on pulse process results in less distortion than the other four benchmark processes. Based on the process comparison and data presented above, the following ranking lists the processes in order from best to worst with respect to resulting distortion (vertical displacement):

- 1. Superpulse, Pulse on Pulse
- 2. Conventional CV
- 3. Superpulse. Pulse on Short
- 4. Pulse
- 5. Superpulse, Pulse on Spray

This ranking is subjective because some assemblies such as benchmark assembly 4 repeat (pulse/short) demonstrated an improvement over the length of the plate; however it demonstrated more torsion (differences in displacement values between points A and B for a given location). For better visualization of torsion, refer to Tables 6.2 through 6.8 where color red indicates higher distortion compared to color yellow and light green indicates no change. In all cases, the trend for the longitudinal plots was for increased distortion at section B compared to section A, C, and T. Section B is along the edge on the same side as the weld deposit. When comparing Net Displacement Longitudinal Plots of section B for benchmark assembly 1 and benchmark assembly 2 (Figure 5.64 and Figure 5.68), it is clear that benchmark assembly 2 resulted in less distortion than benchmark assembly 1.

Benchmark assembly 3 (pulse/spray) was repeated under tension as assembly 6 because the vertical displacement values were the highest of the five processes with a "Sum Net Displacement" at +62. The objective of using mechanical tensioning during the welding of the assembly was to reduce vertical displacement without significant increases in torsion. Assembly 6 was welded using a tension load of 6000lbs and a significant reduction in distortion was observed compared to benchmark assembly 3. Assembly 6 was similar to benchmark assembly 3 for torsion. The "sum net displacement" improves from +62mm to +10.5mm, an improvement of 51.5mm or **490%** using mechanical tensioning vs. an unrestrained condition. It is also useful to compare Net Displacement Longitudinal Plots from Figure 6.11 to Figure 6.14 for benchmark 3 and Figure 6.31 to 6.34 for assembly 6. Net Improvement Longitudinal Plots from Figure 6.38 to 6.40 highlight the improvement in distortion from benchmark assembly 3 to assembly 6 performed under tension.

The results for benchmark assembly 4 (pulse/short) were compromised due to tacks breaking during welding at the 2200mm location on the assembly. Benchmark assembly 4 was repeated to rule out the possibility of additional distortion occurring in this location due to the broken tacks. Benchmark assembly 4 (repeat) confirmed that there was indeed an increase in distortion due to the broken tacks. The "Sum Net Displacement" was improved from +157mm to -7.0mm, an improvement of 164mm. During welding of assembly 6 under tension, a tack broke as well. With the aid of the mechanical tensioning, there were no adverse effects with respect to distortion from the broken tack on this assembly.

There appears to be no correlation between heat input and resulting distortion as superpulsepulse on pulse has the highest heat input, and lowest distortion of the four processes. The conventional CV process was able to achieve the greatest travel speed at 50IPM which is a benefit for productivity. The pulse process was very close in travel speed at 46IPM; however, distortion was greater with pulse than with conventional CV.

The superpulse technology is limited in travel speed due to the switching between primary and secondary phases. Reducing the second phase time can assist in traveling faster; however, this is counteractive to the benefits of the superpulse technology as the process becomes more similar to standard pulse transfer. Traveling too fast with the superpulse processes results in less desirable weld profile and erratic arc characteristics. The weld size of ¹/₄" for Benchmark Assembly 2 and Benchmark Assembly 4 was larger than initially desired; however, the parameters were necessary to maintain acceptable penetration and fusion profiles. Benchmark Assembly 2 (Pulse on Pulse) achieves the greatest amount of straightening at the two ends of the plate as seen in Figures 6.35, 6.36 and 6.37. Negative values indicate that the plate has reduced in vertical displacement after welding compared to the plate position before welding. Benchmark Assembly 4 (repeat) resulted in a similar effect as well as benchmark assembly 1.

There appears to be no correlation between penetration profile and resulting distortion. The most desirable weld profiles resulted from the superpulse and pulse processes with flat bead shapes. The conventional CV process resulted in a slightly convex bead shape. Depth of penetration is acceptable for all five processes with the least penetration being achieved with superpulse, pulse on short as seen in Figure 2.103.

Welding procedure data sheets for the five process variations (Standard CV, Standard Pulse, Superpulse Pulse on Pulse, Superpulse Pulse on Spray, and Superpulse Pulse on Short) are shown in **Appendix D.**

Follow on work to this project could include investigating the tolerance of superpulse technology when dealing with inconsistent fit-up (root gaps) compared to conventional CV. This work could be performed in both non-restrained and tensioned state. It is believed that the cooling effect of the secondary phase with superpulse technology would allow for larger deviations in fit-up. It is also believed, based on the effectiveness of the mechanical tensioning with breaking tacks, that there would be a more significant advantage of using mechanical tensioning in cases where fit up is less than optimal.

7. TASK 5: TANDEM MCAW (T-MCAW) OF STIFFENER ASSEMBLIES RESULTS

Welding of stiffener assemblies with the FCAW process, tension and no-tension cases, was discussed earlier. The same stiffener panel assembly configuration was repeated using the T-MCAW process, tension and no-tension cases, to compare with the FCAW results. Different shielding gases were also experimented with to determine the optimal gas for achieving high speed fillet welds with desired surface and penetration profile characteristics. The base plates used for this work were 10" wide, 5mm thick CSA G40.21 300W uncoated steel.

Once the results were complete and the optimal parameters, shielding gas and tension load was determined, final weldments were produced on larger scale 4' x 10' primed HSLA 80 panels. Parameters were fine tuned to achieve desirable fillet welds welding over primer. The FCAW benchmark procedure was repeated for tension and no-tension cases for comparison to the T-MCAW when welding over primer on HSLA 80 Steel.

7.1 Stiffened Panel Assembly (10" wide base plate)

All the stiffened panels (5mm thick) to be welded were marked up as illustrated in Figure 7.1. Panel distortion (vertical) measurements are recorded for points A, B and T along the width and T1 to T23 along the length, using a laser level. For all plates to be welded under mechanical tension, the distortion data is recorded at all three stages:

- 1. Before welding
- 2. Before welding under tension
- 3. After welding

For benchmark stiffener assembly in absence of tension, data is recorded before and after completion of welding. In addition, a similar measurement grid was setup for the test support frame upon which the stiffener assembly to be welded was supported.

Figure 7.1: Stiffened Panel Distortion Measurement Grid

T-MCAW process was used for all welded stiffener assemblies. Table 7.1 summarizes the test cases that were analyzed. Tables 7.2 through 7.5 summarize the measured distortion data for stiffener assemblies at locations A and B. The data is color-coded red and yellow to help better visualize the assembly distortion (torsion). The color red indicates a higher distortion compared to color yellow, whereas light green indicates no change in displacement.

Stiffener Assembly	Applied Tension (lbs)
T-MCAW_Stiff_1_Benchmark 92Ar/8C02	0
T-MCAW_Stiff_2 92Ar/8C02	10,000
T-MCAW_Stiff_3 85Ar/15C02	10,000
T-MCAW_Stiff_4 75Ar/25C02	10,000

 Table 7.1: Test Summary

Table 7.2:	T-MCAW_Stiff_1_Benchmark Distortion Data	

	Bet	f <mark>ore W</mark> e	eld			After Weld							
Disp	olacemer	<mark>nt w.r.t to</mark>	Frame, r	nm		Displacement w.r.t to Frame, mm							
	A T B Abs Diff			Α	Т	В	Abs Diff						
1	9	58.5	10	1		1	5.5	55.5	5.5	0			
2	8	58	9	1		2	5.5	55	5.5	0			
3	6.5	56.75	7.5	1		3	4.5	54	4.5	0			
4	6	55.5	6.5	0.5		4	4	53	4.5	0.5			
5	4.5	54	5	0.5		5	3.5	52	3.5	0			
6	3.5	52.5	3	0.5		6	2	51	2.5	0.5			
7	2.5	51.75	2.5	0		7	1.5	50.5	2	0.5			
8	1.5	51	1.5	.5 0		8	1	50	1	0			
9	1	50.5	1	0		9	1	49.5	0.5	0.5			
10	0.5	50	0.5	0		10	0.5	49	0.5	0			
11	1	50.5	0.5	0.5		11	1	49.5	0.5	0.5			
12	1	51	1	0		12	1.5	50	1.5	0			
13	1.5	51	1	0.5		13	1.5	50.25	1.5	0			
14	1	51	1	0		14	1	50.5	1	0			
15	2	51.75	1	1		15	2	51	1.5	0.5			
16	3	52.5	1.5	1.5		16	3	51.5	2	1			
17	4	53.25	2	2		17	3.5	52.5	2	1.5			
18	5.5	54	3	2.5		18	4.5	53.5	3.5	1			
19	7	55.5	4.5	2.5		19	4	54.5	4.5	0.5			
20	8.5	57	6	2.5		20	7.5	55.5	5	2.5			
21	10.5	59	7.5	3		21	8.5	57	5.5	3			
22	11	59.5	7.5	3.5		22	9.5	57.5	6	3.5			
23	11.5	60	9.5	2		23	10	58	6.5	3.5			

Before Weld					ſ		Ten	sion N	o Weld		After Weld						
D	ienlacom	ont wrt	to Frame	mm		Di	enlacom	ont wrt	to Frame	mm	Displacement w r t to Frame mm						
		T	B	Δhs Diff				T	B	Abs Diff			T T	R	Abs Diff		
1	11.5	60	11.5	0		1	6.5	55	6.5	∧03 DIII ∩	1	6.5	55	7	0.5		
2	11.5	59.5	11.5	0		2	6.5	54.5	6.5	0	2	6.5	54.5	7	0.5		
- 3	10.5	58	11	0.5		- 3	5	53.5	5	0	- 3	5.5	53.5	6	0.5		
4	10.0	56.5	10	0.0		4	5.5	52.5	5.5	0	4	6	52.5	7	1		
5	8	55	8.5	0.5		5	4.5	51.5	4.5	0	- 5	5	51	6.5	15		
6	6.5	53.5	6.5	0.0		6	3	50.5	3	0	6	3.5	49.5	5	1.5		
7	5.5	52.5	4.5	1		7	2	49.5	2	0	7	2.5	49	4	1.0		
8	4.5	51.5	4	0.5		8	1.5	48.5	1.5	0	8	2	48.5	3.5	1.5		
9	3.5	50.25	3	0.5	ľ	9	1	47.75	1	0	9	2	48	3	1		
10	3	49	2	1		10	0.5	47	0	0.5	10	1.5	47.5	2.5	1		
11	3	49.5	2	1		11	1	47.25	0.5	0.5	11	2	48	2.5	0.5		
12	3	50	2.5	0.5	ľ	12	1.5	47.5	1	0.5	12	2	48.5	2.5	0.5		
13	3.5	49.75	2.5	1		13	1.5	47.5	1	0.5	13	2	48.5	3	1		
14	3	49.5	2	1	ľ	14	1	47.5	0.5	0.5	14	2	48.5	2.5	0.5		
15	3	50	2.5	0.5	ľ	15	1	47.75	0.5	0.5	15	2	49	2.5	0.5		
16	4	50.5	3.5	0.5		16	1.5	48	1	0.5	16	2.5	49.5	3	0.5		
17	4	51.25	4	0		17	1	48.25	0.5	0.5	17	2.5	49.5	2.5	0		
18	4.5	52	4.5	0	ľ	18	1.5	48.5	1.5	0	18	3	49.5	3.5	0.5		
19	5.5	52.75	5	0.5	Ī	19	2	49.25	1.5	0.5	19	3	50.25	3.5	0.5		
20	6.5	53.5	6.5	0	ľ	20	3.5	50	2.5	1	20	4	51	4	0		
21	7.5	55	8	0.5	Ī	21	3.5	51	2	1.5	21	4	52	4	0		
22	7.5	55.25	8	0.5	ľ	22	3.5	51.75	2	1.5	22	4	52.75	4	0		
23	7.5	55.5	8	0.5	Ī	23	3.5	52.5	2	1.5	23	4	53.5	4	0		

Table 7.3: T-MCAW_Stiff_2_92Ar/8C02 Distortion Data

Table 7.4: T-MCAW_Stiff_3_85Ar/15C02 Distortion Data

Before Weld						Tension No Weld						After Weld							
Displacement w.r.t to Frame, mm						Displacement w.r.t to Frame, mm							Displacement w.r.t to Frame, mm						
	Α	Т	В	Abs Diff			Α	Т	В	Abs Diff			Α	Т	В	Abs Diff			
1	9.5	52.5	10.5	1		1	5.5	49	6.5	1		1	6	48.5	7.5	1.5			
2	9.5	52	10.5	1		2	5.5	48.5	6.5	1		2	6	48	7.5	1.5			
3	8.5	50.75	9.5	1		3	4.5	47.5	5.5	1		3	5	47	6.5	1.5			
4	8	49.5	8.5	0.5		4	5	46.5	5.5	0.5		4	5.5	46	7.5	2			
5	6.5	47.75	7	0.5		5	4	45.25	5	1		5	4	45.25	7.5	3.5			
6	5	46	5	0		6	2.5	44	3.5	1		6	3	44.5	6.5	3.5			
7	4	45.25	4.5	0.5		7	1.5	43.5	2.5	1		7	2.5	44	6.5	4			
8	2.5	44.5	3	0.5		8	1	43	1.5	0.5		8	1.5	43.5	5.5	4			
9	2	43.75	2	0		9	1	42.5	1	0		9	2	43	5	3			
10	1.5	43	1	0.5		10	0.5	42	0.5	0		10	1	42.5	4	3			
11	1.5	43.5	1	0.5		11	1	42.5	1	0		11	1.5	43.25	4.5	3			
12	2	44	1.5	0.5		12	1.5	43	1	0.5		12	2	44	5	3			
13	2	44	2	0		13	1.5	43	1.5	0		13	2.5	43.75	5.5	3			
14	2	44	2	0		14	1	43	1	0		14	2	43.5	5	3			
15	2.5	44.75	2	0.5		15	1	43.25	1	0		15	2.5	44.25	5.5	3			
16	3	45.5	3	0		16	1.5	43.5	1.5	0		16	2.5	45	5.5	3			
17	3.5	46.5	3.5	0		17	1.5	44.25	2	0.5		17	3	45.5	6	3			
18	5	47.5	5	0		18	2	45	3	1		18	4	46	7	3			
19	6	49	6	0		19	3	46	4	1		19	4.5	47.25	7.5	3			
20	7.5	50.5	7.5	0		20	4	47	5.5	1.5		20	5	48.5	7.5	2.5			
21	9	52	9	0		21	3	48.5	5	2		21	4.5	49	6.5	2			
22	9	52.75	9	0		22	3	49.25	5	2		22	4.5	49.75	5.5	1			
23	9	53.5	9	0		23	3	50	5	2		23	4	50.5	5.5	1.5			

		_															
	B	efore W	/eld		Tension No Weld						After Weld						
Displacement w.r.t to Frame, mm					Displacement w.r.t to Frame, mm						Displacement w.r.t to Frame, mm						
	Α	Т	В	Abs Diff		Α	Т	В	Abs Diff			Α	Т	В	Abs Diff		
1	9.5	68	10	0.5	1	6	65	4	2		1	5	63.5	4.5	0.5		
2	9.5	67.5	10	0.5	2	6	64.5	4	2		2	5	63.5	4.5	0.5		
3	8.5	66	9	0.5	3	5	63.25	3	2		3	4	62.25	3.5	0.5		
4	7.5	64.5	8	0.5	4	6	62	4	2		4	5	61	5	0		
5	6	62.75	6.5	0.5	5	5	60.5	3.5	1.5		5	4	59.5	5	1		
6	4.5	61	4.5	0	6	3	59	2	1		6	2.5	58	4	1.5		
7	3	60	3	0	7	2	58.25	1.5	0.5		7	2	57.5	3.5	1.5		
8	2.5	59	2.5	0	8	1.5	57.5	1	0.5		8	1.5	57	3	1.5		
9	2	58.25	2	0	9	1	57	1	0		9	1.5	56.75	2.5	1		
10	1.5	57.5	1	0.5	10	0.5	56.5	0.5	0		10	1	56.5	1.5	0.5		
11	2	58	1	1	11	1	57	0.5	0.5		11	1.5	57.25	2.5	1		
12	2	58.5	1.5	0.5	12	1	57.5	1	0		12	2	58	2.5	0.5		
13	2	58.5	1.5	0.5	13	1.5	57.5	1	0.5		13	2	57.75	2.5	0.5		
14	2	58.5	1	1	14	1	57.5	1	0		14	2	57.5	2	0		
15	2.5	59.25	1.5	1	15	1.5	58	1	0.5		15	2.5	57.5	2.5	0		
16	4	60	3	1	16	2	58.5	1	1		16	3	57.5	3	0		
17	4.5	61	3	1.5	17	2	58.75	1.5	0.5		17	3	58.5	3	0		
18	6	62	4	2	18	2.5	59	2.5	0		18	3.5	59.5	3.5	0		
19	7.5	63.75	6	1.5	19	3	60.25	3.5	0.5		19	5	60.5	3.5	1.5		
20	9.5	65.5	7.5	2	20	4.5	61.5	5	0.5		20	6	61.5	4	2		
21	11.5	68	9.5	2	21	4	63	5	1		21	6.5	63	3.5	3		
22	11.5	68.5	9.5	2	22	4	63.75	5	1		22	6.5	63.5	3.5	3		
23	11.5	69	9.5	2	23	4	64.5	5	1		23	6.5	64	3.5	3		

Table 7.5: T-MCAW_Stiff_4_75Ar/25C02 Distortion Data

Figures 7.2 through 7.4 illustrate the net displacements for the T-MCAW benchmark stiffener assembly.

Figure 7.3: Net Displacement along Longitudinal Section B for T-MCAW Stiffener Benchmark Assembly

Figure 7.4: Net Displacement along Longitudinal Section T for T-MCAW Stiffener Benchmark Assembly

In order to measure the effectiveness of mechanical tensioning approach, the net displacement of each marked point on the assembly (Figure 6.39) with respect to the corresponding point on the test frame is compared at each of the stages. Figures 7.5 and 7.6 compare the net displacement along the longitudinal sections A and B for T-MCAW Stiffener Assembly subjected to a tension load of 10,000 lbs. using 92Ar/8C02 shielding gas. Additional plots are provided in **Appendix A**.

Figure 7.5: Net Displacement along Longitudinal Section A for T-MCAW Stiffener Assembly 2

Figure 7.6: Net Displacement along Longitudinal Section B for T-MCAW Stiffener Assembly 2

7.1.1 Net Improvement

The distortion data in Table 7.6 and Figures 7.7 through 7.9 compare the overall net improvement achieved in controlling distortion under applied tension with respect to benchmark assembly. The negative values, color coded light blue indicates location where tensioning has been effective to counter distortion due to welding. Also cells color coded green indicate no change in distortion and yellow indicates an increase in distortion. Additional plots are provided in Appendix F.

Net Displacement, mm				
Dis	placeme	nt w.r.t to	Frame,	mm
	Α	Т	В	Abs Diff
1	-5	-5	-4.5	0.5
2	-5	-5	-4.5	0.5
3	-5	-4.5	-5	0
4	-4	-4	-3	1
5	-3	-4	-2	1
6	-3	-4	-1.5	1.5
7	-3	-3.5	-0.5	2.5
8	-2.5	-3	-0.5	2
9	-1.5	-2.25	0	1.5
10	-1.5	-1.5	0.5	2
11	-1	-1.5	0.5	1.5
12	-1	-1.5	0	1
13	-1.5	-1.25	0.5	2
14	-1	-1	0.5	1.5
15	-1	-1	0	1
16	-1.5	-1	-0.5	1
17	-1.5	-1.75	-1.5	0
18	-1.5	-2.5	-1	0.5
19	-2.5	-2.5	-1.5	1
20	-2.5	-2.5	-2.5	0
21	-3.5	-3	-4	0.5
22	-3.5	-2.5	-4	0.5
23	-3.5	-2	-4	0.5

Table 7.6: T-MCAW_Stiff_2 Net Displacement

Net Displacement, mm			Net Impro	ovemer	<mark>nt, mm</mark>		
Benchmark			Ber	nchmark			
	Α	Т	В	Abs Diff			
1	-3.5	-3	-4.5	1	-1.5	-2	0
2	-2.5	-3	-3.5	1	-2.5	-2	-1
3	-2	-2.75	-3	1	-3	-1.75	-2
4	-2	-2.5	-2	0	-2	-1.5	-1
5	-1	-2	-1.5	0.5	-2	-2	-0.5
6	-1.5	-1.5	-0.5	1	-1.5	-2.5	-1
7	-1	-1.25	-0.5	0.5	-2	-2.25	0
8	-0.5	-1	-0.5	0	-2	-2	0
9	0	-1	-0.5	0.5	-1.5	-1.25	0.5
10	0	-1	0	0	-1.5	-0.5	0.5
11	0	-1	0	0	-1	-0.5	0.5
12	0.5	-1	0.5	0	-1.5	-0.5	-0.5
13	0	-0.75	0.5	0.5	-1.5	-0.5	0
14	0	-0.5	0	0	-1	-0.5	0.5
15	0	-0.75	0.5	0.5	-1	-0.25	-0.5
16	0	-1	0.5	0.5	-1.5	0	-1
17	-0.5	-0.75	0	0.5	-1	-1	-1.5
18	-1	-0.5	0.5	1.5	-0.5	-2	-1.5
19	-3	-1	0	3	0.5	-1.5	-1.5
20	-1	-1.5	-1	0	-1.5	-1	-1.5
21	-2	-2	-2	0	-1.5	-1	-2
22	-1.5	-2	-1.5	0	-2	-0.5	-2.5
23	-1.5	-2	-3	1.5	-2	0	-1

Figure 7.7: T-MCAW_Stiff_2 -Net Improvement at Location A.

Figure 7.8: T-MCAW_Stiff_2 -Net Improvement at Location B

Figure 7.9: T-MCAW_Stiff_2 -Net Improvement at Location T

As mentioned previously, the FCAW process, with and without tension, was presented in earlier in this report. Displacements are plotted on Figures 7.10 through 7.12 for locations A, B, and T to compare the non-tension cases. Net-Improvement comparisons are shown on Figures 7.13 through 7.15 for 10 000lbs tension cases. Additional distortion plots are shown in **Appendix E.**

Distance from Edge, mm

Figure 7.10: Net Displacement along Longitudinal Section A for Benchmark T-MCAW Stiffener Assembly vs. Benchmark FCAW Stiffener Assembly

Distance from Edge, mm

Figure 7.12: Net Displacement along Longitudinal Section T for Benchmark T-MCAW Stiffener Assembly vs. Benchmark FCAW Stiffener Assembly

Figure 7.13: Net Improvement along Longitudinal Section A for T-MCAW Stiffener Assembly vs. FCAW Stiffener Assembly with 10 000lbs Tension

Figure 7.14: Net Improvement along Longitudinal Section B for T-MCAW Stiffener Assembly vs. FCAW Stiffener Assembly with 10 000lbs Tension

Figure 7.15: Net Improvement along Longitudinal Section T for T-MCAW Stiffener Assembly vs. FCAW Stiffener Assembly with 10 000lbs Tension

From the data presented it can be concluded that the mechanical tensioning approach as applied to fillet welding of stiffener assemblies does provide an advantage to counter distortion. The best weldability, profile, and distortion results were with the use of 92Ar/8C02 shielding gas. Penetration profile and weld profile are shown in Figure 7.16 and 7.17. Second best results were achieved with the use of 85Ar/15C02, see Figure 7.18 for weld profile.

The data presented also shows that use of the T-MCAW process results in a similar reduction in distortion compared with the FCAW process. The advantage is that with the T-MCAW process, welding speeds are 90IPM compared to 28IPM with the FCAW Process representing a 221% improvement in travel speed. The productivity of the stiffener welding operations would be greatly increased by using the T-MCAW process.

Figure 7.16: T-MCAW Weld Profile

Figure 7.17: T-MCAW Weld Profile with 92Ar/8C02

Figure 7.18: T-MCAW Weld Profile with 85Ar/15C02

The above results are with material that has primer and mill scale removed. Common practice in the shipyards is to weld the stiffeners to the plate material over the primer. Parameters were tweaked for both FCAW and T-MCAW process for welding over primer. The test assemblies welded over primer used larger HSLA 80 sheets, approximately 4' x 10' in size. A new distortion matrix was created to adequately capture change in vertical displacement of the larger assemblies. Preliminary welds were produced and it was determined that the use of 85Ar/15C02 shielding gas was better suited to welding over primer compared to 92Ar/8C02 shielding gas.

7.2 Stiffened Panel Assembly (4' x 10' HSLA 80 Base Plate)

All the stiffened panels (5mm thick) to be welded were marked up as illustrated in Figure 7.19. Panel distortion (vertical) measurements are recorded for points A through K along the width and T1 to T23 along the length, using a laser level. For all plates to be welded under mechanical tension, the distortion data is recorded at all three stages:

- 1. Before welding
- 2. Before welding under tension
- 3. After welding

For benchmark stiffener assembly in absence of tension, data is recorded before and after completion of welding. In addition, a similar measurement grid was setup for the test support frame upon which the stiffener assembly to be welded are supported.

Additional readings included coating thickness measurements which were taken every 4" along the length of the plate (weld zone) and stiffener edge to determine if there is any correlation between porosity and primer thickness. Tables 7.7 and 7.8 show the coating thickness readings for stiffener and plate 7.

Figure 7.19: Stiffened Panel Distortion Measurement Grid

Distance (mm) From Stiffener End	Thickness Reading (mil)
25	1.74
125	1.99
225	1.27
325	1.21
425	1.83
525	1.56
625	1.38
725	1.67
825	1.90
925	1.71
1025	1.64
1125	1.95
1225	1.94
1325	1.72
1425	2.07
1525	1.83
1625	1.32
1725	1.71
1825	1.98
1925	1.73
2025	1.80
2125	1.85
2225	1.29
2325	1.61
2425	1.69
2525	1.62
2625	1.58
2725	1.77
2825	1.34
2925	1.83
3125	1.66
Average	1.68

 Table 7.7: Coating Thickness Readings for Stiffener 7

Distance (mm) From Plate End	Thickness Reading (mil)
25	0.94
125	1.10
225	1.16
325	1.15
425	1.33
525	1.51
625	1.47
725	1.16
825	1.14
925	1.44
1025	1.89
1125	0.84
1225	0.84
1325	1.22
1425	1.02
1525	0.82
1625	1.22
1725	0.90
1825	0.73
1925	0.89
2025	1.37
2125	0.80
2225	1.01
2325	1.38
2425	1.00
2525	1.36
2625	1.24
2725	1.01
2825	0.78
2925	1.39
3125	1.39
Average	1.15

Table 7.8: Coating Thickness Readings for Plate 7

Rows highlighted in red indicate readings above 1.5mil. As seen in Table 7.7, many of the reading are above 1.5mil making stiffener 7 the stiffener with the thickest application of primer with an average thickness reading of 1.68mil. Base plate 7 had a thinner application of primer with an average thickness reading of 1.15mil.

Tables 7.9 and 7.10 show the coating thickness readings for stiffener and plate 3.

Distance (mm) From Stiffener End	Thickness Reading (mil)
25	1.53
125	1.31
225	1.35
325	1.09
425	1.07
525	1.18
625	1.09
725	1.36
825	1.23
925	1.13
1025	1.11
1125	1.28
1225	0.93
1325	0.93
1425	0.93
1525	1.22
1625	1.51
1725	1.18
1825	1.24
1925	1.13
2025	1.17
2125	0.74
2225	1.08
2325	1.13
2425	1.13
2525	1.51
2625	1.75
2725	1.23
2825	1.39
2925	1.26
3125	1.20
Average	1.21

	~			•	CI . 1 00	-
Table 7.9:	Coating	Thickness	Readings	for	Stiffener	3

Distance (mm) From Plate End	Thickness Reading (mil)
25	0.98
125	1.15
225	0.61
325	0.96
425	1.06
525	1.32
625	0.62
725	0.90
825	1.32
925	0.78
1025	1.21
1125	0.98
1225	1.02
1325	1.08
1425	1.05
1525	0.79
1625	1.12
1725	0.88
1825	0.98
1925	1.49
2025	0.83
2125	1.22
2225	0.80
2325	0.63
2425	0.85
2525	1.11
2625	0.63
2725	0.86
2825	0.90
2925	0.92
3125	1.15
Average	0.97

 Table 7.10: Coating Thickness Readings for Plate 3

Stiffener and base plate 3 had an application of primer significantly less than 1.5mil with an average thickness reading of 1.21mil and 0.97mil. Because of the significant differences in average coating thickness between stiffener 7 and 3, test assembly 7 and test assembly 3 will be compared for porosity counts to determine if primer thickness plays a role in the amount of porosity generated for the FCAW process.

Tables 7.11 and 7.12 show the coating thickness readings for stiffener and plate 8.

Distance (mm) From Stiffener End	Thickness Reading (mil)
25	2.04
125	1.57
225	1.16
325	1.17
425	0.99
525	1.10
625	0.87
725	1.33
825	1.03
925	0.85
1025	1.03
1125	2.11
1225	1.01
1325	0.93
1425	1.28
1525	2.31
1625	1.69
1725	2.31
1825	1.08
1925	1.29
2025	1.52
2125	1.39
2225	1.78
2325	1.58
2425	1.41
2525	4.73
2625	0.77
2725	3.16
2825	0.71
2925	2.15
3125	1.09
Average	1.53

Table 7.11: Coating Thickness Readings for Stiffener 8

Distance (mm) From Plate End	Thickness Reading (mil)
25	0.95
125	1.44
225	0.93
325	0.93
425	1.52
525	1.39
625	1.22
725	0.91
825	1.31
925	1.60
1025	0.97
1125	1.06
1225	1.59
1325	1.87
1425	1.45
1525	1.29
1625	0.79
1725	1.04
1825	1.11
1925	1.58
2025	0.99
2125	1.05
2225	1.25
2325	1.51
2425	1.39
2525	1.17
2625	1.00
2725	1.65
2825	1.07
2925	0.85
3125	1.09
Average	1.22

 Table 7.12: Coating Thickness Readings for Plate 8

Stiffener 8 had an application of primer that was greater than 1.5mil. Not only was it greater than 1.5mil, it exhibited regions (due to inconsistencies in the profile of the cut surface of the stiffener) where the coating thickness was as great as 4.73mil. Plate 8 had a typical coating thickness that was uniform throughout the length of the plate.

Tables 7.13 and 7.14 show the coating thickness readings for stiffener and plate 9.

Distance (mm) From Stiffener End	Thickness Reading (mil)
25	1.23
125	1.08
225	1.54
325	1.36
425	1.22
525	1.42
625	0.98
725	0.81
825	1.35
925	1.35
1025	1.29
1125	1.74
1225	1.28
1325	1.86
1425	0.96
1525	1.36
1625	1.37
1725	1.45
1825	1.16
1925	0.86
2025	1.31
2125	1.09
2225	1.12
2325	1.04
2425	0.92
2525	1.02
2625	1.15
2725	0.94
2825	1.02
2925	0.93
3125	1.22
Average	1.21

 Table 7.13: Coating Thickness Readings for Stiffener 9

Distance (mm) From Plate End	Thickness Reading (mil)
25	1.03
125	0.96
225	0.95
325	0.89
425	0.84
525	1.36
625	0.77
725	1.59
825	1.66
925	0.94
1025	1.74
1125	1.11
1225	1.24
1325	0.94
1425	1.03
1525	1.35
1625	1.12
1725	1.80
1825	1.18
1925	1.27
2025	1.09
2125	0.94
2225	0.94
2325	1.08
2425	1.17
2525	1.38
2625	1.41
2725	0.95
2825	1.52
2925	1.61
3125	1.52
Average	1.21

Stiffener and base plate 9 had an application of primer that averaged 1.21mil. The coating thickness of stiffener 9 was much more consistent compared to that of stiffener 8. Assembly 8 and assembly 9 will be compared for porosity counts to determine if primer thickness plays a role in the amount of porosity generated for the T-MCAW process.

It was decided that since the large 4' x 10' plates are distorted to begin with, a distortion matrix consisting of 11 points down the length of the plates and three point (center and the two extremities) across the width of the plates was used to measure distortion of the base plates for the purpose of matching up base plates with similar distortion profiles. This was done for better accuracy in comparison of the benchmark and tension cases. A total of ten plates were selected with each of these ten plates marked with a distortion matrix and measured for distortion. Distortion plots were produced and used to compare between the ten plates. Figures 7.20 through 7.22 show the displacement plots of the base plates. Figures 7.23 through 7.25 show the similarity between plates 7 and 3 used for the FCAW benchmark and tension case. Figures 7.26 through 7.28 show the similarity between plates 8 and 9.

Section A

Figure 7.20: Vertical Displacement of Ten Base Plates for Location A

Figure 7.21: Vertical Displacement of Ten Base Plates for Location B

Figure 7.22: Vertical Displacement of Ten Base Plates for Location C

Section B

Figure 7.23: Vertical Displacement Comparison of Plate 3 and Plate 7 for Location A

Figure 7.24: Vertical Displacement Comparison of Plate 3 and Plate 7 for Location B

Section **B**

Figure 7.25: Vertical Displacement Comparison of Plate 3 and Plate 7 for Location C

Section A

Figure 7.26: Vertical Displacement Comparison of Plate 8 and Plate 9 for Location A

Section B

Figure 7.27: Vertical Displacement Comparison of Plate 8 and Plate 9 for Location B

Section C

Figure 7.28: Vertical displacement Comparison of Plate 8 and Plate 9 for Location C

The FCAW and T-MCAW processes were used for the welded stiffener assemblies. Table 7.15 summarizes the test cases that were analyzed. Tables 7.16 through 7.25 summarize the measured distortion data for stiffener assemblies at locations A through K. The data is color-coded red and yellow to help better visualize the assembly distortion (torsion). The color red indicates a higher distortion compared to color yellow, whereas light green indicates no change in displacement. Additional net-displacement plots are shown in **Appendix G** and **Appendix J**.

Stiffener Assembly	Applied Tension (lbs)
FCAW, Benchmark Plate 7	0
T-MCAW, Benchmark Plate 8	0
FCAW, Plate 3	10,000
T-MCAW, Plate 9	10,000

 Table 7.15: Test Summary

Table 7.16:	FCAW	' Benchmark	Plate 7	Distortion	Data befo	re Welding
-------------	------	-------------	---------	------------	-----------	------------

	Before Weld - Plate 7 Displacement w.r.t to Frame, mm													
				Dis	placeme	<mark>nt w.r.t to</mark>	Frame, I	mm						
	Α	В	С	D	E	F	G	Н	I	J	К			
1	22	26	27.5	27.5	28.5	160	28	26.5	25	24	21			
2	23.5	28	29	28.5	29.5	160	28	27	26.5	24	20			
3	24	28	29	28.5	28.5	159.5	28	26	25	23.5	19			
4	23.5	27	28.5	29.5	29.5	159	27.5	26	25	23.5	19.5			
5	21	24.5	26	26	27	159	27	26	25	23.5	20.5			
6	18.5	22.5	24	25.5	25.5	158.5	26.5	25.5	25	23	21			
7	16.5	21	24	25	25.5	158	25.5	25	24	23	20.5			
8	16	21	24	24	25.5	159	26	25.5	24	23.5	20.5			
9	16.5	21	23	25	25	159	25.5	25	24	23	21			
10	17.5	22.5	23.5	25	26.5	159	25	24.5	23.5	23	21			
11	20	24	24.5	26	25.5	159.5	24.5	24	23	23	20.5			
12	21.5	25	26	27	26.5	160	25	24.5	23	23	20.5			
13	21.5	26	26.5	28	28	161	26	25	23.5	22	20.5			
14	17.5	22	23.5	25	24.5	160	24	23.5	22.5	20.5	20			
15	16	21	23	24.5	25	161	25	24.5	24	22	20			
16	15	25	23	24.5	25	162.5	26.5	26	24.5	23	20			
17	14.5	19.5	22	24.5	25	161.5	25.5	25.5	24.5	22.5	20.5			
18	15	19.5	23	24.5	26	162	24.5	24.5	23.5	22	21			
19	19	23	25.5	26.5	27.5	163	25	24.5	23.5	22	21			
20	21.5	25	26.5	28.5	29	164.5	24.5	24.5	23.5	22	19.5			
21	23	27.5	29	29.5	30.5	165.5	25.5	25	23.5	21.5	19			
22	23.5	27.5	29	29.5	31.5	166.5	26	25	22.5	20.5	17			
23	22.5	26.5	28.5	29.5	31	167	26	25	22.5	20	17			

					After V	Veld -	Plate 7					
				Dis	placeme	nt w.r.t to	Frame, I	mm				
	Α	В	С	D	E	F	G	Н	I	J	K	
1	24.5	27	26.5	27	25	155	20	19	19	19	16.5	
2	26	28	27.5	28	26	155	20.5	20	20	20	17.5	
3	25.5	28	27.5	28	25	154.5	21	20	20.5	20.5	18.5	
4	24	26.5	26.5	28.5	26.5	154	21.5	21	22	22	19.5	
5	20	23	23	24.5	23	154	22	22.5	23.5	23.5	22.5	
6	16.5	19	20.5	23	21.5	153.5	22.5	23.5	25.5	26	25	
7	13.5	17	19	22	21.5	153	22.5	24.5	26	26.5	26	
8	12.5	16.5	18.5	20.5	21.5	153.5	23	24.5	26.5	27	26	
9	13.5	17.5	18	21.5	21	154	22.5	24.5	25	26.5	25	
10	16.5	20	20	22.5	23	154.5	22	23	23.5	23.5	23	
11	21	24.5	23	24.5	22.5	154	20.5	21.5	21.5	22	20.5	
12	25.5	27.5	26	26.5	24.5	155	21	21.5	21.5	21.5	19.5	
13	27.5	29	27.5	27.5	25.5	156	22	22	22.5	21.5	20	
14	23	25	24	24	21.5	154.5	20.5	21.5	22	22.5	22	
15	19.5	22.5	22.5	23	21.5	156	22	23.5	25	25	24.5	
16	17	20	21	22	21.5	157	23.5	25	26.5	27	27.5	
17	15.5	18.5	19.5	22	21	156.5	21.5	25	26	26.5	28	
18	15.5	18.5	20	21.5	22	157	20.5	23	24	25.5	26	
19	18.5	21.5	22.5	23	22.5	158	21	22	22.5	23.5	24.5	
20	21	24	24.5	24.5	24	159	19.5	20.5	21	21.5	20.5	
21	22	25	25.5	25.5	25	159.5	20.5	20	20	19.5	18.5	
22	22	24.5	25	25.5	25.5	160.5	20	19	18.5	17	15	
23	21	24	24.5	24.5	25.5	161	20	19	17.5	16.5	14	

 Table 7.17: FCAW Benchmark Plate 7 Distortion Data after Welding

Table 7.18: T-MCAW Benchmark Plate 8 Distortion Data before Welding

	Before Weld - Plate 8													
				D	isplaceme	ent w.r.t to	Frame, n	nm						
	Α	В	С	D	E	F	G	н	I	J	к			
1	13.5	17	19	20.5	23	151	22.5	21	19.5	17.5	13			
2	15	18.5	20.5	22	24	151	23	21.5	20	18.5	14			
3	16	19.5	21.5	22.5	23	150	23	21.5	19.5	19	15			
4	17	20	22.5	24	24.5	149.5	22.5	21	20.5	19.5	15			
5	17	20.5	22.5	22.5	23	149.5	21.5	20.5	19.5	19	16			
6	18.5	22	23.5	23.5	22.5	149	20.5	19.5	18	17.5	14.5			
7	21	24	25	24.5	23	148.5	19	18	16.5	15	12			
8	22.5	25.5	26	25	24	149	20	18	16.5	14.5	11.5			
9	22	25	24.5	25	23.5	149	20	18.5	16.5	15.5	12.5			
10	19.5	22.5	22.5	23.5	23.5	149	20.5	19	18	16.5	14			
11	17	20.5	20.5	21.5	22.5	149	20.5	20	19	18.5	16.5			
12	17	19.5	19	21	22.5	150	21	20.5	19.5	19	16.5			
13	18	20.5	20	21.5	23	150.5	22	21	20	19	17			
14	17	19.5	19.5	20	21	150	20	19	18	16.5	14.5			
15	19	22.5	22	22.5	22.5	150	21	19.5	18.5	16.5	15.5			
16	21.5	24.5	24.5	24	23.5	151	21	20.5	18.5	17	14.5			
17	20.5	23.5	24	24.5	23.5	150.5	20.5	20	18.5	17	15			
18	18.5	21.5	23	24	24.5	150.5	21	21	19	17.5	17			
19	17	20.5	22	23.5	25	152	21.5	22	20.5	20	19.5			
20	16.5	20	22	24.5	26.5	153	23	22.5	21.5	21	18			
21	17	21	23	25	26.5	154	24	23.5	22.5	21.5	18.5			
22	19.5	22.5	24.5	27	28.5	155	25	24	22.5	20.5	17			
23	20	23	25.5	27.5	29	155.5	25.5	24.5	24	20.5	17			

	After Weld No Tension - Plate 8												
				Di	isplaceme	ent w.r.t to	Frame, n	nm					
	Α	В	С	D	E	F	G	Н	I	J	К		
1	11	13	14.5	16	15.5	145	16.5	17	17	17	13		
2	13.5	15.5	17	17.5	16.5	145	17	17.5	17.5	17.5	14		
3	16.5	18	19	19	16.5	144.5	16.5	17.5	17	17.5	14.5		
4	18.5	20.5	21.5	21.5	18.5	144	16.5	17.5	18	18	14.5		
5	21.5	23.5	23.5	21.5	18	143.5	16	16.5	16.5	16.5	14		
6	26	27	26.5	24	18	143	15	15	14.5	14	11		
7	31	31	29.5	26.5	20	143	13.5	12.5	11.5	11	7		
8	33	33	31.5	27	20.5	143	13.5	12.5	11	10	6.5		
9	31.5	32	29.5	27.5	20	143	14	13.5	11.5	11.5	7.5		
10	26	27	25.5	24	20.5	143	15	14.5	13.5	13.5	9.5		
11	20.5	22	20.5	20	18.5	143	15	16.5	16.5	16.5	15		
12	17.5	19	17.5	18	17	144	16	17.5	18.5	18	17		
13	18.5	19.5	18	18.5	18	144.5	16.5	18.5	18.5	19.5	18		
14	19	19.5	18.5	18	16.5	142.5	15	16	17	17	15.5		
15	24	24.5	23	21.5	18.5	143.5	15.5	16.5	17	16	15		
16	28.5	28.5	26.5	24	19.5	144.5	16	16.5	17	16.5	15		
17	27.5	28	25.5	24	20	144	15	16	16.5	16	15		
18	23.5	24	23.5	22	20	144	15	16	16.5	16.5	17		
19	20	20.5	20.5	20	19.5	145	15.5	17	17	17.5	18.5		
20	16.5	18.5	18.5	19.5	19.5	145.5	16	17	17	17.5	17		
21	16.5	18.5	18.5	19.5	20.5	146.5	17	17.5	17.5	17.5	16.5		
22	16.5	18.5	19.5	21	21.5	147	17	17	17	16.5	15		
23	17	19	20.5	21.5	21.5	147.5	17.5	17.5	17	16	14.5		

 Table 7.19:
 T-MCAW Benchmark Plate 8 Distortion Data after Welding

Table 7.20: FCAW Plate 3 Distortion Data, No-Tension before Welding

					Before	Weld -	Plate 3	3				
				Dis	placeme	nt w.r.t to	Frame, I	mm				
	Α	В	С	D	E	F	G	Н	I	J	К	
1	24	27	27	28.5	30	164	30.5	29.5	25	22	17	
2	24.5	27.5	28	28.5	30.5	163.5	31	30	26.5	24	19	
3	24.5	27	27	27.5	28.5	162	31	30	27	23.5	19.5	
4	23.5	26	27	28.5	30	161	30	30	27.5	24.5	20	
5	20.5	23.5	24.5	25	27.5	159.5	29.5	29.5	27.5	25	21	
6	17	21	23	24	25	158.5	28	29	26.5	25	21	
7	15	19.5	22	24	25	157	27	28	26	23.5	20.5	
8	15	19.5	22	23	25	156.5	26.5	27.5	25.5	23.5	20	
9	16	19	20.5	23	23.5	156	26	26.5	25	24	19.5	
10	16.5	19	19.5	21.5	24	155.5	25	26	25	23.5	20.5	
11	18	19.5	19	20.5	21.5	154	23.5	25.5	25.5	24	20.5	
12	19.5	20.5	19.5	20.5	21.5	154	23.5	26	25.5	24	21	
13	20	21	19.5	21	22	154	24.5	26	25.5	23.5	21	
14	17	17.5	17	18	19	151.5	22	23.5	23.5	22	20	
15	15.5	17	16.5	17.5	19	151.5	22	23.5	23.5	22	19	
16	15.5	17.5	17	18	19	151.5	22	23	22.5	21.5	19	
17	15	16.5	16.5	18.5	19	150	21	21.5	21.5	20	19.5	
18	15.5	17	17.5	18.5	19.5	149.5	19.5	21	20	20.5	20	
19	17	18	18.5	19	20	149.5	20	21	21.5	21.5	21	
20	18.5	18.5	19	19.5	20.5	149.5	19.5	21.5	21.5	22	20.5	
21	17	17.5	18.5	19.5	21	150	19.5	20.5	21	20	20	
22	13.5	14.5	16	18.5	20	150.5	18	18	17.5	17	17	
23	10.5	12	14	17	19.5	150.5	17	16.5	15.5	15	15	

	Tension No Weld - Plate 3													
				Displac	ement w.	r.t to Fra	me. mm							
	A	В	с	D	E	F	G	н	I	J	к			
1	18	19.5	19	18.5	20	154.5	19	19	17.5	15.5	13.5			
2	20	21	20	20	21	154	21	21.5	19.5	18	15			
3	20	22.5	20	20	20.5	153	21.5	21.5	21	19	17.5			
4	20.5	22	22	21.5	22.5	152.5	21.5	22.5	21.5	21.5	18			
5	20	21.5	20.5	19	21	151.5	22	22.5	22.5	22	19			
6	18	19.5	20	19.5	19.5	151	21.5	22	21.5	21.5	19			
7	16	18.5	19.5	19.5	19.5	150	20	20.5	20.5	20	17.5			
8	16	18.5	19.5	19	20	150	20	21	21	20	17.5			
9	16.5	19	18.5	19.5	19.5	150	19	20.5	20.5	19.5	17			
10	17	19	18.5	19.5	20	149.5	19	20.5	20.5	20	18			
11	18	19	17.5	18.5	18.5	149	18.5	20.5	20.5	20.5	19.5			
12	19.5	20.5	18.5	19	19.5	149.5	19	21	21.5	20.5	19			
13	20	21	19	19.5	20	149.5	20	22	22	21	19			
14	17	18	16.5	16.5	17	147.5	17.5	19.5	21	19.5	18			
15	17	18	17	17.5	17.5	148	18.5	20	20	19.5	17.5			
16	17.5	18.5	17.5	17.5	17.5	148.5	18.5	20	20	19	17			
17	16.5	17.5	17	18.5	17.5	147.5	17.5	19.5	19.5	18	17.5			
18	16.5	18	17.5	17.5	18	147.5	17	19	19	18	18.5			
19	17.5	18	18	18.5	19	147.5	18	19.5	19	19	20			
20	18	18	18	18.5	19	148	18	19	19.5	19	18.5			
21	17.5	17	17.5	18.5	19	149.5	18.5	19	18.5	18	18			
22	13.5	14	15.5	17.5	18.5	149.5	16	16.5	15.5	14.5	14			
23	10	12	13.5	16.5	18	149.5	14.5	14	13	13	12			

 Table 7.21: FCAW Plate 3 Distortion Data, Tension before Welding

 Table 7.22: FCAW Plate 3 Distortion Data, Tension after Welding

	After Weld - Plate 3 Displacement w.r.t to Frame, mm													
				Dis	placeme	nt w.r.t to	Frame, I	mm						
	Α	В	С	D	E	F	G	Н	I	J	к			
1	25	25.5	23.5	21.5	21	154	18.5	18.5	17	16.5	13.5			
2	26	26.5	24	22.5	22	153.5	20.5	21	20	19	16			
3	26	26.5	24	22.5	21	152.5	21.5	22	21.5	21	18.5			
4	25.5	26	24.5	24.5	23	152	22	24	22.5	23.5	20			
5	21.5	23	22.5	21.5	21	151	23	25	24	25	22			
6	16.5	19.5	20	20	19.5	150.5	23	25	24	25.5	22			
7	13	17	19.5	20.5	20	149.5	22	24	23.5	24	21			
8	13	17	19.5	20	20.5	150	22.5	24.5	23.5	23	20.5			
9	14.5	17.5	18.5	20.5	20	150	22	24	23.5	23	19			
10	16	18	18.5	19.5	21	150	22	24	24	23	20			
11	18.5	19.5	18.5	19	19	149.5	21.5	25	25.5	24.5	22			
12	20	20.5	19	21	20	150	23	25.5	27.5	27	25			
13	20.5	21	19.5	20	21	150.5	24	27.5	29.5	29.5	28			
14	17	18	17	17	17.5	148.5	22.5	25.5	28.5	29	30			
15	16.5	18	17	17.5	18	149	22.5	26	28.5	29.5	30			
16	17.5	19.5	18.5	19	19	150	22.5	25	27	27.5	27.5			
17	19	20	19.5	20.5	20	149.5	21	23.5	25	24.5	24			
18	21	21.5	21.5	21.5	21	149.5	20	22	22.5	22.5	22			
19	23.5	23.5	23	22.5	21.5	150.5	20.5	21.5	22	22	22			
20	24	23.5	23	23	22.5	151	20.5	20.5	21.5	21.5	20			
21	22.5	22	22	23	23	151.5	20.5	20.5	20.5	20.5	19.5			
22	18.5	19	19.5	21	22	152.5	18	18	18	17	16			
23	16.5	16.5	17.5	19.5	21	153	16	16	15	14.5	14			

					Before	Weld -	Plate 9)				
				Dis	placeme	nt w.r.t to	Frame, I	mm				
	Α	В	С	D	E	F	G	Н	I	J	K	
1	6	12.5	17	19.5	23	157.5	25	24	19.5	18	13	
2	10.5	17.5	20.5	22.5	25.5	157.5	25.5	25	20.5	19	14	
3	15.5	26.5	23.5	25.5	26.5	157	26	24.5	20.5	19	14	
4	19	25	26.5	28.5	29	156.5	26	23	21.5	19.5	15	
5	20.5	26	26.5	26.5	27	156	25	22.5	21	19.5	15.5	
6	19.5	25	26	26.5	26	155.5	25.5	22	20.5	19	15.5	
7	17.5	22.5	25	26	25.5	154.5	24.5	21	18.5	17	13.5	
8	16	21	24	24.5	25.5	154.5	24.5	21	19	17	14	
9	14.5	19.5	22	24	24	153.5	24.5	21	19.5	17	14	
10	14.5	19.5	21	23.5	25	153	24.5	21.5	19.5	17.5	15.5	
11	16.5	20.5	21.5	22.5	24.5	152	24	26	19.5	18.5	17	
12	18.5	23	24	25	25.5	152.5	23.5	21	20	19	17	
13	21	25	25.5	26.5	26	153.5	23	21	19.5	18.5	17	
14	20	23	24.5	24.5	23.5	151.5	21	18.5	17.5	16.5	15	
15	20	23.5	24.5	25	24	152.5	21.5	19	18	16.5	14.5	
16	19.5	23	24.5	24.5	24.5	153	22.5	19.5	18.5	17	15.5	
17	16.5	20.5	22	23.5	23.5	152.5	21.5	19.5	18.5	17.5	16	
18	15.5	19	21.5	22.5	24	152.5	21.5	20	19	17.5	18	
19	16.5	19.5	22	23.5	24.5	154	22.5	21	19.5	19	19	
20	17.5	21.5	24	25	25.5	154.5	22.5	21	20.5	19	18	
21	18.5	22.5	25	26.5	26.5	155	22.5	21.5	20.5	19.5	17	
22	19	23	25.5	26.5	27	156	22.5	21.5	20	18.5	16.5	
23	18	22.5	25.5	26.5	27	156.5	22.5	21.5	20	18.5	16.5	

 Table 7.23:
 T-MCAW Plate 9 Distortion Data, No-Tension before Welding

Table 7.24: T-MCAW Plate 9 Distortion Data, Tension before Welding

	Tension No Weld - Plate 9 Displacement w.r.t to Frame, mm													
				Displac	ement w	.r.t to Fra	me, mm							
	Α	В	С	D	E	F	G	Н	I	J	К			
1	4.5	9	11	13	16	150	13.5	14	13.5	14.5	9			
2	9.5	13	15	16	18	150	15	15.5	15	16	10			
3	14	17.5	18.5	18.5	19	149.5	16.5	16	16.5	16.5	12.5			
4	17	20.5	21	21.5	21.5	149	17	17	17	17	13			
5	18	21	20.5	19.5	20	148.5	16	17	17.5	17	14			
6	17	19.5	20	19.5	18	148	16	16.5	16.5	16.5	14			
7	14.5	18.5	19	19	18	146.5	15.5	15.5	15.5	15	11.5			
8	13.5	16.5	18.5	18	18	146.5	15.5	15.5	15.5	14.5	11.5			
9	12.5	15.5	16.5	17.5	16.5	146	15.5	15.5	15.5	15	12.5			
10	13	15.5	16	17	17.5	145.5	16	15.5	16	15.5	14			
11	15	17	16	17	17	145	15	15.5	16	16	15			
12	17	18.5	18	18	18	145	15.5	16	16.5	16.5	15.5			
13	18	20	19.5	19.5	18.5	145.5	15.5	16	16	16.5	15.5			
14	16	18	18	17.5	16	143.5	13.5	13.5	14	14.5	13.5			
15	16	18.5	18.5	18	16.5	143.5	13.5	14	14	14.5	13			
16	16	18.5	18.5	18	17	145.5	14.5	15	15	14.5	13.5			
17	14.5	16.5	16.5	17	16.5	145	14	14.5	15	15	15			
18	14	15	16.5	16.5	17	145	14	15	15.5	16	17			
19	15	16	17	17	17.5	146	15	16	16.5	16.5	18			
20	15.5	17.5	18.5	19	18.5	147	15.5	16	16.5	17	16.5			
21	16.5	18.5	19.5	19.5	19.5	148.5	16	16.5	16.5	17	16			
22	16	18	19.5	19.5	20	149	15.5	16	16	16	15			
23	15	17.5	19	19	19.5	149.5	15.5	15.5	16	16	15			

	After Weld No Tension - Plate 9												
				Dis	placeme	nt w.r.t to	Frame, I	mm					
	Α	В	С	D	E	F	G	Н	I	J	к		
1	8	12	13.5	14.5	17	150	15	15	14	10.5	8		
2	13.5	17	18	18	19.5	150	17	17	16	13.5	10.5		
3	19	22.5	22.5	21	20.5	149.5	18	17.5	17	15.5	12.5		
4	23	26	25.5	25	23.5	149	19	19.5	19.5	17	14		
5	25.5	27.5	26	24	22	148.5	20	21	21.5	19.5	17		
6	23.5	25.5	25	24	21	148	20.5	21.5	23	21.5	20.5		
7	19.5	22	22.5	22	20	147	20.5	22.5	24	23.5	23		
8	16	18.5	19.5	19	19.5	146.5	21.5	24	26	26	26.5		
9	13	16	16.5	18	18	146	21.5	24.5	27	27	26.5		
10	13	15.5	15.5	17.5	18	145.5	21.5	24	26	26	26.5		
11	16	18	17	18	18	145	20	22.5	24	23.5	24		
12	20.5	22.5	21.5	21.5	20	145.5	19	21	21.5	20.5	20		
13	25.5	27	25.5	24	21.5	146	18.5	19	18.5	17	16		
14	26.5	27.5	26	23	19	144.5	15.5	15.5	15	13	12.5		
15	27	27.5	26	23.5	19.5	145	16	15.5	14.5	12.5	10.5		
16	25	26	25	23	19.5	146	16.5	16.5	15.5	13.5	12		
17	20	21.5	21	21	19	146	16.5	17	16	14.5	14.5		
18	16.5	18	19	18.5	18.5	146	16	17	16.5	16	17		
19	15.5	17.5	18.5	18.5	18.5	147	16.5	17.5	17.5	17.5	18.5		
20	16	17.5	19	19.5	19	148	16.5	16.5	17	17.5	17.5		
21	16.5	18.5	20	20	20	148.5	16.5	17	16.5	17	17		
22	15.5	18	19.5	19.5	19.5	149.5	15.5	16	16	16	15		
23	15	17.5	19	19	19	150	15	15.5	16	16	14.5		

 Table 7.25:
 T-MCAW Plate 9 Distortion Data, Tension after Welding

Figures 7.29 through 7.31 illustrate the net displacements for the FCAW benchmark stiffener assembly welding over primer. Lines are plotted representing the average for each set of readings for comparison purposes. Plots were prepared for points A through K as shown in **Appendix G**. Points E, F (stiffener), and G are shown below.

Figure 7.29: Net Displacement along Longitudinal Section E for FCAW Benchmark Assembly Plate 7

Figure 7.30: Net Displacement along Longitudinal Section F (Stiffener) for FCAW Benchmark Assembly Plate 7

Distance from Edge, mm

Figure 7.31: Net Displacement along Longitudinal Section G for FCAW Benchmark Assembly Plate 7

Figures 7.32 through 7.34 illustrate the net displacements for the T-MCAW benchmark stiffener assembly welding over primer. Lines are plotted representing the average for each set of readings for comparison purposes. Plots were prepared for points A through K as shown in **Appendix G**. Points E, F (stiffener), and G are shown below.

Distance from Edge, mm

Figure 7.32: Net Displacement along Longitudinal Section E for T-MCAW Benchmark Assembly Plate 8

Figure 7.33: Net Displacement along Longitudinal Section F (Stiffener) for T-MCAW Benchmark Assembly Plate 8

Distance from Edge, mm

Figure 7.34: Net Displacement along Longitudinal Section G for T-MCAW Benchmark Assembly Plate 8

6131C.FR

Figures 7.35 through 7.37 illustrate the net displacements for the FCAW stiffener assembly welded using 10 000lbs tension (welding over primer). Lines are plotted representing the average for each set of readings for comparison purposes. Plots were prepared for points A through K as shown in **Appendix G**. Points E, F (stiffener), and G are shown below.

Figure 7.35: Net Displacement along Longitudinal Section E for FCAW 10 000lbs Tension Assembly Plate 3

Figure 7.36: Net Displacement along Longitudinal Section F (Stiffener) for FCAW 10 000lbs Tension Assembly Plate 3

Distance from Edge, mm

Figure 7.37: Net Displacement along Longitudinal Section G for FCAW 10 000lbs Tension Assembly Plate 3

Figures 7.38 through 7.40 illustrate the net displacements for the T-MCAW stiffener assembly welded using 10 000lbs tension (welding over primer). Lines are plotted representing the average for each set of readings for comparison purposes. Plots were prepared for points A through K as shown in **Appendix G**. Points E, F (stiffener), and G are shown below.

Distance from Edge, mm

Figure 7.39: Net Displacement along Longitudinal Section F (Stiffener) for T-MCAW 10 000lbs Tension Assembly Plate 9

Distance from Edge, mm

7.2.1 <u>Net Improvement</u>

The distortion data in Table 7.26 and Figures 7.41 through 7.43 compare the overall net improvement achieved in controlling distortion with the use of the T-MCAW (benchmark assembly) with respect to FCAW (benchmark assembly). The negative values, color coded light blue indicates location where tensioning has been effective to counter distortion due to welding. Also cells color coded green indicate no change in distortion and yellow indicates an increases in distortion. Additional plots and tables are provided in **Appendix H.**

	Net Improvement, mm									
Benchmark										
Α	В	С	D	E	F	G	Н	I	J	ĸ
-5	-5	-3.5	-4	-4	-1	2	3.5	3.5	4.5	4.5
-4	-3	-2	-4	-4	-1	1.5	3	4	3	2.5
-1	-1.5	-1	-3	-3	-0.5	0.5	2	2	1.5	0
1	1	1	-1.5	-3	-0.5	0	1.5	0.5	0	-0.5
5.5	4.5	4	0.5	-1	-1	-0.5	-0.5	-1.5	-2.5	-4
9.5	8.5	6.5	3	-0.5	-1	-1.5	-2.5	-4	-6.5	-7.5
13	11	9.5	5	1	-0.5	-2.5	-5	-7	-7.5	-10.5
14	12	11	5.5	0.5	-0.5	-3.5	-4.5	-8	-8	-10.5
12.5	10.5	10	6	0.5	-1	-3	-4.5	-6	-7.5	-9
7.5	7	6.5	3	0.5	-1.5	-2.5	-3	-4.5	-3.5	-6.5
2.5	1	1.5	0	-1	-0.5	-1.5	-1	-1	-1	-1.5
-3.5	-3	-1.5	-2.5	-3.5	-1	-1	0	0.5	0.5	1.5
-5.5	-4	-3	-2.5	-2.5	-1	-1.5	0.5	-0.5	1	1.5
-3.5	-3	-1.5	-1	-1.5	-2	-1.5	-1	-0.5	-1.5	-1
1.5	0.5	1.5	0.5	-0.5	-1.5	-2.5	-2	-2.5	-3.5	-5
5	9	4	2.5	-0.5	-1	-2	-3	-3.5	-4.5	-7
6	5.5	4	2	0.5	-1.5	-1.5	-3.5	-3.5	-5	-7.5
4.5	3.5	3.5	1	-0.5	-1.5	-2	-3.5	-3	-4.5	-5
3.5	1.5	1.5	0	-0.5	-2	-2	-2.5	-2.5	-4	-4.5
0.5	-0.5	-1.5	-1	-2	-2	-2	-1.5	-2	-3	-2
0.5	0	-1	-1.5	-0.5	-1.5	-2	-1	-1.5	-2	-1.5
-1.5	-1	-1	-2	-1	-2	-2	-1	-1.5	-0.5	0
-1.5	-1.5	-1	-1	-2	-2	-2	-1	-2	-1	0.5

Table 7.26: Net Improvement, T-MCAW Plate 8 vs. FCAW Plate 7 (No Tension)

Figure 7.41: Net Improvement along Longitudinal Section E for T-MCAW Plate 8 vs. FCAW Plate 7 (No Tension)

Figure 7.42: Net Improvement along Longitudinal Section F (Stiffener) for T-MCAW Plate 8 vs. FCAW Plate 7 (No Tension)

Figure 7.43: Net Improvement along Longitudinal Section G for T-MCAW Plate 8 vs. FCAW Plate 7 (No Tension)

The T-MCAW process results in a reduction in vertical displacement (distortion) compared to the FCAW process for the benchmark assemblies with no applied mechanical tension.

The distortion data in Table 7.27 and Figures 7.44 through 7.46 compare the overall net improvement achieved in controlling distortion with the use of the T-MCAW (10 000lbs tension) with respect to FCAW (benchmark assembly). The negative values, color coded light blue indicates location where tensioning has been effective to counter distortion due to welding. Also cells color coded green indicate no change in distortion and yellow indicates an increases in distortion. Additional plots and tables are provided in **Appendix H.**

	Net Improvement, mm									
	Benchmark									
Α	В	С	D	Е	F	G	Н	I	J	К
-0.5	-1.5	-2.5	-4.5	-2.5	-2.5	-2	-1.5	0.5	-2.5	-0.5
0.5	-0.5	-1	-4	-2.5	-2.5	-1	-1	2	-1.5	-1
2	-4	0.5	-4	-2.5	-2.5	-1	-1	1	-0.5	-1
3.5	1.5	1	-2.5	-2.5	-2.5	-1	1.5	1	-1	-1
6	3	2.5	-1	-1	-2.5	0	2	2	0	-0.5
6	4	2.5	0	-1	-2.5	-1	1.5	2	-0.5	1
5	3.5	2.5	-1	-1.5	-2.5	-1	2	3.5	3	4
3.5	2	1	-2	-2	-2.5	0	4	4.5	5.5	7
1.5	0	-0.5	-2.5	-2	-2.5	0	4	6.5	6.5	8.5
-0.5	-1.5	-2	-3.5	-3.5	-3	0	4	6.5	8	9
-1.5	-3	-3	-3	-3.5	-1.5	0	-1	6	6	7
-2	-3	-2.5	-3	-3.5	-2	-0.5	3	3	3	4
-1.5	-1	-1	-2	-2	-2.5	-0.5	1	0	-1	-0.5
1	1.5	1	-0.5	-1.5	-1.5	-2	-1	-2	-5.5	-4.5
3.5	2.5	2	0	-1	-2.5	-2.5	-2.5	-4.5	-7	-8.5
3.5	8	2.5	1	-1.5	-1.5	-3	-2	-5	-7.5	-11
2.5	2	1.5	0	-0.5	-1.5	-1	-2	-4	-7	-9
0.5	0	0.5	-1	-1.5	-1.5	-1.5	-1.5	-3	-5	-6
-0.5	-0.5	-0.5	-1.5	-1	-2	-2	-1	-1	-3	-4
-1	-3	-3	-1.5	-1.5	-1	-1	-0.5	-1	-1	-1.5
-1	-1.5	-1.5	-2.5	-1	-0.5	-1	0.5	-0.5	-0.5	0.5
-2	-2	-2	-3	-1.5	-0.5	-1	0.5	0	1	0.5
-1.5	-2.5	-2.5	-2.5	-2.5	-0.5	-1.5	0	1	1	1

Table 7.27: Net Improvement	t, T-MCAW Plate 9 vs. l	FCAW Plate 7 (No Tension)
-----------------------------	-------------------------	---------------------------

Figure 7.44: Net Improvement along Longitudinal Section E for T-MCAW Plate 9 (10 000lbs tension) vs. FCAW Plate 7 (No Tension)

Figure 7.45: Net Improvement along Longitudinal Section F (Stiffener) for T-MCAW Plate 9 (10 000lbs tension) vs. FCAW Plate 7 (No Tension)

Figure 7.46: Net Improvement along Longitudinal Section G for T-MCAW Plate 9 (10 000lbs tension) vs. FCAW Plate 7 (No Tension)

From the data presented, it can be concluded that the T-MCAW process, as applied to fillet welding of high strength steel stiffener assemblies does provide some advantage to counter distortion without the use of tension. It can also be concluded that the mechanical tensioning approach as applied to fillet welding of high strength steel stiffener assemblies also provides some advantage to counter distortion.

All the distortion comparisons to this point have been with respect to vertical displacement, assuming that a negative displacement is good and a positive displacement is bad. A negative displacement represents the plate lowering with respect to the frame and a positive displacement represents the plate rising with respect to the frame.

7.3 Difference between Average and Displacement Values

Another approach was used to compare distortion. This approach requires that an average of the displacements for points 1 to 23 for each location (A through K) is calculated and represented as a straight line on the displacement plots (see Figures 7.29-7.40). Figures 7.47 and 7.48 show the displacement values with respect to the average including before welding, before welding with tension (if applicable), and after welding. The difference between the average and the positive or negative displacement was plotted to visualize how much deviation there was from the straight line average. With this methodology, positive and negative values both represent unwanted displacement. Tables 7.28 and 7.29 display values (deviation from the average) showing all values as positive so that they could be added to come up with a number to compare between the plates. Additional plots are shown in **Appendix K.**

Figure 7.48: Vertical Displacement with Respect to Average along Longitudinal Section E for T-MCAW Plate 9 (10 000lbs Tension

		D	ifferend	ce Btw.	. Avg a	nd Dis	o - Afte	r Weld	- Plate	e 7		
	Displacement w.r.t to Frame, mm											
	Α	В	С	D	E	F	G	Н	I	J	K	
1	4.4	4.1	3.3	2.7	1.7	0.9	1.3	3.0	3.6	3.8	5.2	28.8
2	5.9	5.1	4.3	3.7	2.7	0.9	0.8	2.0	2.6	2.8	4.2	30.8
3	5.4	5.1	4.3	3.7	1.7	1.4	0.3	2.0	2.1	2.3	3.2	28.3
4	3.9	3.6	3.3	4.2	3.2	1.9	0.2	1.0	0.6	0.8	2.2	22.7
5	0.1	0.1	0.2	0.2	0.3	1.9	0.7	0.5	0.9	0.7	0.8	5.5
6	3.6	3.9	2.7	1.3	1.8	2.4	1.2	1.5	2.9	3.2	3.3	24.5
7	6.6	5.9	4.2	2.3	1.8	2.9	1.2	2.5	3.4	3.7	4.3	34.5
8	7.6	6.4	4.7	3.8	1.8	2.4	1.7	2.5	3.9	4.2	4.3	39.0
9	6.6	5.4	5.2	2.8	2.3	1.9	1.2	2.5	2.4	3.7	3.3	34.0
10	3.6	2.9	3.2	1.8	0.3	1.4	0.7	1.0	0.9	0.7	1.3	16.5
11	0.9	1.6	0.2	0.2	0.8	1.9	0.8	0.5	1.1	0.8	1.2	8.7
12	5.4	4.6	2.8	2.2	1.2	0.9	0.3	0.5	1.1	1.3	2.2	20.3
13	7.4	6.1	4.3	3.2	2.2	0.1	0.7	0.0	0.1	1.3	1.7	25.4
14	2.9	2.1	0.8	0.3	1.8	1.4	0.8	0.5	0.6	0.3	0.3	11.6
15	0.6	0.4	0.7	1.3	1.8	0.1	0.7	1.5	2.4	2.2	2.8	11.7
16	3.1	2.9	2.2	2.3	1.8	1.1	2.2	3.0	3.9	4.2	5.8	26.7
17	4.6	4.4	3.7	2.3	2.3	0.6	0.2	3.0	3.4	3.7	6.3	28.2
18	4.6	4.4	3.2	2.8	1.3	1.1	0.8	1.0	1.4	2.7	4.3	23.3
19	1.6	1.4	0.7	1.3	0.8	2.1	0.3	0.0	0.1	0.7	2.8	9.0
20	0.9	1.1	1.3	0.2	0.7	3.1	1.8	1.5	1.6	1.3	1.2	13.5
21	1.9	2.1	2.3	1.2	1.7	3.6	0.8	2.0	2.6	3.3	3.2	21.5
22	1.9	1.6	1.8	1.2	2.2	4.6	1.3	3.0	4.1	5.8	6.7	27.5
23	0.9	1.1	1.3	0.2	2.2	5.1	1.3	3.0	5.1	6.3	7.7	26.5
	84.4	76.3	60.7	45.2	38.5	43.6	21.3	38.0	50.8	59.8	78.3	518.5

Table 7.28:	Vertical Displacement with Respect to
Averag	ge for FCAW Plate 7 (No Tension)

Evaluation of Advanced Gas Metal Arc Welding and Distortion Mitigation Techniques for Thin Panel Steel and Aluminum Structures

	Difference Btw. Avg and Disp - After Weld - Plate 9											
	Displacement w.r.t to Frame, mm											
	Α	В	С	D	E	F	G	Н	I	J	K	
1	11.0	9.3	6.6	5.2	2.3	3.1	1.4	2.4	0.1	0.2	2.7	41.6
2	6.5	4.3	3.1	2.2	0.2	3.1	1.9	3.4	0.9	0.8	1.7	26.4
3	1.5	4.7	0.1	0.8	1.2	2.6	2.4	2.9	0.9	0.8	1.7	17.9
4	2.0	3.2	2.9	3.8	3.7	2.1	2.4	1.4	1.9	1.3	0.7	24.7
5	3.5	4.2	2.4	1.8	1.7	1.6	1.4	0.9	1.4	1.3	0.2	20.2
6	2.5	3.2	2.4	1.8	0.7	1.1	1.9	0.4	0.9	0.8	0.2	15.7
7	0.5	0.7	1.4	1.3	0.2	0.1	0.9	0.6	1.1	1.2	2.2	8.0
8	1.0	0.8	0.4	0.2	0.2	0.1	0.9	0.6	0.6	1.2	1.7	6.0
9	2.5	2.3	1.6	0.7	1.3	0.9	0.9	0.6	0.1	1.2	1.7	12.1
10	2.5	2.3	2.6	1.2	0.3	1.4	0.9	0.1	0.1	0.7	0.2	12.1
11	0.5	1.3	2.1	2.2	0.8	2.4	0.4	4.4	0.1	0.3	1.3	14.5
12	1.5	1.2	0.4	0.3	0.2	1.9	0.1	0.6	0.4	0.8	1.3	7.4
13	4.0	3.2	1.9	1.8	0.7	0.9	0.6	0.6	0.1	0.3	1.3	14.1
14	3.0	1.2	0.9	0.2	1.8	2.9	2.6	3.1	2.1	1.7	0.7	19.5
15	3.0	1.7	0.9	0.3	1.3	1.9	2.1	2.6	1.6	1.7	1.2	17.1
16	2.5	1.2	0.9	0.2	0.8	1.4	1.1	2.1	1.1	1.2	0.2	12.5
17	0.5	1.3	1.6	1.2	1.8	1.9	2.1	2.1	1.1	0.7	0.3	14.3
18	1.5	2.8	2.1	2.2	1.3	1.9	2.1	1.6	0.6	0.7	2.3	16.8
19	0.5	2.3	1.6	1.2	0.8	0.4	1.1	0.6	0.1	0.8	3.3	9.4
20	0.5	0.3	0.4	0.3	0.2	0.1	1.1	0.6	0.9	0.8	2.3	5.2
21	1.5	0.7	1.4	1.8	1.2	0.6	1.1	0.1	0.9	1.3	1.3	10.6
22	2.0	1.2	1.9	1.8	1.7	1.6	1.1	0.1	0.4	0.3	0.8	12.1
23	1.0	0.7	1.9	1.8	1.7	2.1	1.1	0.1	0.4	0.3	0.8	11.1
	55.5	54.1	41.5	34.3	26.1	36.1	31.6	31.9	17.8	20.4	30.1	349.3

Table 7.29: Vertical Displacement with Respect toAverage for T-MCAW Plate 9 (10 000lbs Tension)

The sum of all vertical displacement with respect to the average for the benchmark FCAW plate 7 was 518.5 compared to 349.3 for the T-MCAW plate welded with 10 000lbs tension. This indicates that the stiffener plate assembly welded with T-MCAW using 10 000lbs of tension exhibited **48%** less distortion overall compared to the benchmark FCAW stiffener test assembly.

7.4 Porosity Results

FCAW plates 7, 3 and MCAW plates 8, 9 (primed plates) were evaluated for porosity indications by method of visual examination of fractured weld surface as per the requirements of MIL-ST-248C. A total length of 36" was required for testing from each test assembly. A 12" section was taken from the start, center, and end locations of the large test assemblies to investigate possible patterns related to amount of porosity and location of porosity on the plate. The 12" sections were then cut into 6" sections to facilitate fracturing for examination. The first side weld was removed by grinding and tabs were welded to the top and bottom of the specimen for loading in the load cell where tension was applied until fracture occurred. Measurements of porosity indications were taken from the fractured weld surface and evaluation was performed to MIL-STD-248C. See Tables 7.30 through 7.33 for porosity results.

		Porosity	Counts for Plate 7
Weld Location	Location (Ruler)	# Defects at 3/32" min.	Special Notes
Start 1	0-1"	1	
	1-2"	0	
	2-3"	0	
	3-4"	0	
	4-5"	0	
	5-6"	0	
Start 2	0-1"	0	
	1-2"	0	
	2-3"	0	
	3-4"	0	
	4-5"	0	
	5-6"	0	
Center 1	0-1"	0	
	1-2"	0	
	2-3"	0	
	3-4"	0	
	4-5"	0	Fail: More than 5 indications larger than 1/16" were found within
	5-6"	0	1 inch of weld exceeding maximum as stated in MIL-STD-248C
Center 2	0-1"	0	
	1-2"	0	
	2-3"	0	
	3-4"	0	
	4-5"	0	
	5-6"	0	
E 14	0.4		
End 1	0-1"	0	
	1-2"	0	
	2-3"	0	
	3-4"	0	
	4-5"	0	
	5-6	0	
Fado	0.4"	0	
	U-I 1 0"	0	
	<u>1-∠</u> 2.2"	0	
	2-3	0	
	J-4 1 5"	0	
	4-0 5.6"	0	
	0-C	0	

Table 7.30:	Porosity	Counts	for	Plate	7
	1 01 00105	Country			

Plate 7 was relatively free of porosity in the fractured weld with only one region in the center of the plate exhibiting an accumulation of more than 5 porosity indications greater than 1/16" within 1 inch of weld. For this reason plate 7 fails to meet the requirements of MIL-STD-248C. Photographs of all fracture specimens for plate 7 are shown in **Appendix M**.

		Porosity	Counts for Plate 3
Weld Location	Location (Ruler)	# Defects at 3/32" min.	Special notes
Start 1	0-1"	0	
	1-2"	0	
	2-3"	0	
	3-4"	0	
	4-5"	0	
	5-6"	0	
Start 2	0-1"	0	
	1-2"	0	
	2-3"	0	
	3-4"	0	
	4-5"	0	
	5-6"	0	
Center 1	0-1"	0	
	1-2"	0	
	2-3"	0	
	3-4"	0	
	4-5"	0	
	5-6"	0	
Center 2	0-1"	1	
	1-2"	0	
	2-3"	0	
	3-4"	0	
	4-5"	0	
	5-6"	0	
		-	
End 1	0-1"	6	3/32" defect to surface at 7/8" mark.
	1-2"	3	
	2-3"	0	
	3-4"	0	
	4-5"	0	
	5-6"	0	Fail: Indication exceeding 3/32" as stated in MIL-STD-248C
	0.4		
End 2	0-1"	0	
	1-2"	0	
	2-3"	0	
	3-4"	0	
	4-5"	0	
	5-6"	0	

Table 7.31:	Porosity	Counts	for	Plate	3
	I OI OBIU	Counts	101	I Iuw	~

Plate 3 was also relatively free of porosity in the fractured weld with only one region in the end of the plate exhibiting a porosity indication greater than 3/32." For this reason plate 3 fails to meet the requirements of MIL-STD-248C. Photographs of all fracture specimens for plate 3 are shown in **Appendix L**.

The stiffener used for Plate 7 had a thicker layer of primer (1.68 mil average) compared to the stiffener used for Plate 3 (1.21 mil average). The base plate used for Plate 7 also had a thicker layer of primer (1.15 mil average) compared to the base plate used for Plate 3 (0.97 mil). It appears that the primer thickness does not have a bearing (under 2 mil in thickness) on the resulting porosity indications using the FCAW process. This is most likely explained by the slower welding speeds and longer degasification times associated with the FCAW process when welding over primers.

eld Location	Location (Ruler) #	Defects at 3/32"	min. Special notes
Start 1	0-1"	2	3/32" defect to surface at 1-7/8"" mark.
	1-2"	2	
	2-3"	4	
	3-4"	2	
	4-5"	0	
	5-6"	0	Fail: Indication exceeding 3/32" as stated in MIL-STD-248C
0	0.4		
Start 2	0-1"	2	
	1-2"	2	
	2-3"	3	
	3-4"	3	
	4-5"	3	Fail: More than 5 indications larger than 1/16" were found within
	5-6"	3	1 inch of weld exceeding maximum as stated in MIL-STD-248C
Center 1	0-1"	2	
Ochior 1	1-2"	4	
	2-3"	3	3/32" defect to surface at 2-1/4" mark
	2.5	1	
	4-5"	2	
	5-6"	4	Fail: Indication exceeding 3/32" as stated in MIL-STD-248C
Center 2	0-1"	2	
	1-2"	1	
	2-3"	1	
	3-4"	1	
	4-5"	0	
	5-6"	4	Fail: Indication exceeding 3/32" as stated in MIL-STD-248C
End 1	0.1"	1	
	1.0"	<u> </u>	
	1-2	<u> </u>	
	2-3	2	
	3-4	<u>∠</u>	
	4-5	<u> </u>	Eaily Indiantian exceeding 2/22" as atoted in MIL STD 2480
	5-6	1	Fail: Indication exceeding 3/32 as stated in MIL-STD-246C
End 2	0-1"	2	
	1-2"	2	
	2-3"	3	
	3-4"	2	
	4-5"	4	
	5-6"	3	Fail: Indication exceeding 3/32" as stated in MIL-STD-248C

Table 7.32: Porosity Counts for Plate 8

Plate 8 exhibited the greatest amount of porosity with many indications exceeding 3/32" throughout the start, center, and end locations. For this reason plate 8 fails to meet the requirements of MIL-STD-248C. Photographs of all fracture specimens for plate 8 are shown in **Appendix N**.

		Porosity	Counts for Plate 9
Weld Location	Location (Ruler)	# Defects at 3/32" min.	Special Notes
Start 1	0-1"	0	
	1-2"	0	
	2-3"	0	
	3-4"	0	
	4-5"	2	
	5-6"	0	Fail: Indication exceeding 3/32" as stated in MIL-STD-248C
			-
Start 2	0-1"	0	
	1-2"	0	
	2-3"	0	
	3-4"	0	
	4-5"	0	
	5-6"	0	
Center 1	0-1"	2	
	1-2"	1	
	2-3"	2	
	3-4"	2	
	4-5"	0	
	5-6"	0	
Center 2	0-1"	1	
	1-2"	2	
	2-3"	0	
	3-4"	0	
	4-5"	0	
	5-6"	0	Fail: Indication exceeding 3/32" as stated in MIL-STD-248C
			-
End 1	0-1"	0	
	1-2"	0	
	2-3"	0	
	3-4"	0	
	4-5"	0	
	5-6"	0	
End 2	0-1"	1	
	1-2"	1	
	2-3"	3	
	3-4"	1	
	4-5"	0	
	5-6"	0	Fail: Indication exceeding 3/32" as stated in MIL-STD-248C

 Table 7.33: Porosity Counts for Plate 9

Plate 9 exhibited significantly less porosity compared to plate 8. A total of three indications exceeding 3/32" in the start, center, and end locations were observed. For this reason plate 9 fails to meet the requirements of MIL-STD-248C. Photographs of all fracture specimens for plate 9 are shown in **Appendix O**.

The stiffener used for Plate 8 had a thicker layer of primer (1.53 mil average) compared to the stiffener used for Plate 9 (1.21 mil average). The stiffener used for plate 8 also exhibited dramatic fluctuations in primer thickness from 0.71 mil to 4.73 mil due to the rough surface condition of the cut edge of the stiffener. The base plate used for Plate 8 and Plate 9 were similar in thickness at 1.22 mil and 1.21 mil. It appears that fluctuations in primer thickness have a bearing on the resulting porosity indications using the T-MCAW process.

7.5 **Productivity Results**

Travel speeds obtained with the T-MCAW process were much faster than with the benchmark FCAW process. The T-MCAW non-primed stiffener assemblies were welded at 90IPM travel speeds compared to 28IPM travel speeds achieved with the FCAW benchmark procedure for a **221% increase** in travel speed. The T-MCAW primed stiffener assemblies were welded at 60IPM travel speeds compared to 25IPM travel speeds achieved with the FCAW benchmark procedure for a **140%** increase in travel speed. The resulting weld size was slightly larger for the T-MCAW process (between ¼" and 3/16" leg size) compared to the resulting weld size for the FCAW process (between 1/8" and 3/16"). Figures 7.49 and 7.50 show data sheets for the FCAW and T-MCAW processes for both welding over primer and welding on clean steel.

BMT Fleet Technology						WELDING PRO DATA SH	CEDUF EET	RE		WPDS NO.: DATE:	FCAW-2F 26-Jun-08	1	Rev.:				
Compa	ny Name:	BMT Fle	BMT Fleet Technology							Ref. Standards:							
Address:		311 Legg	311 Legget Drive Kanata, Ontario K2K 1Z8							Ref. WPS:							
Welding	Processe	s: 1	FCAW Pulsed: Yes V No									Pulsed:	Yes No				
Shieldir	ng Gas Ty	be:	100% C02														
Position	ns:	Horizont	al (2F)					Join	t Configuratio	n & Pass/L	ayer Seque	ince					
Process	s Mode:	Manı	ual	Semi-A	uto 🗸	Machine		2			CONTRACTOR OF	20					
Joint Ty	/pe:	Butt	✓ Te	e 🗌	Corner	Lap [+ Ti +								
Penetration:		Com	Complete Partial ETT= I Fillet							hand		-	14				
Backing:		Material:	Material: N/A Thickness: N/A									/	S				
Backgo	Backgouging:		Method:	N/A			AL BELL				/	V					
		No No	Depth:	N/A			10.56				/						
Electro	de Extensi	on: contact t	contact tip to work distance = 19mm to 25mm								1	-					
Nozzle	Diameter(s): 7/8" to 3/	7/8" to 3/4"								/						
Flux Cla	assification	n: N/A								*							
Tungste	en Electro	le: Type:	N/A			Dia.:	100										
Cleanin	g Procedu	res As Requ	As Required: Chipping, wire brush, wire wheel								1		•				
1												5	Tı				
											-						
CSA W Splice 7	CSA W186 Rebar Splice Type: Direct Splice Indirect Splice Lap Splice Rebar to Structural Member Only																
Identifi	cation of	Base Materia	I(for CSA	W186 indic	ate carbon	equivalent, max. pl	nosphorus	& sulphu	r content)								
Part			Sp	ecification	& Grade			Thickness or Dia. Special Requirement									
I HSLA 80										3/16"							
II HSLA 80								3/16"									
Identifi	cation of	Filler Materia	al														
Pro	cess		Trade N	ame		0	lassificati	on		Group		Filler Trea	atment				
FCAW	Т	rimark				MIL-101TM											
									_								
Weldin	g Parame	ters															
Thick- ness (In.)	Weld Size/ ETT	Layer	Pass Number	Welding Process	Dia. (in.)	Wire Feed Speed (IPM)	Current A	Volt V	Current Polarity	Welding Speed (IPM)	Burn-Off Rate ()	Gas Flow Rate (CFH	Heat Input (kJ/in)				
					Ba	ase Material in I	Primed (Conditi	on								
3/16	3/16	1	1	FCAW	.045	350	210	30	DCEP	25	N/A	40	15				
					Ba	a Material with	Deliver	Demos									
3/16	3/16	1	1	FCAW	045	320	205	27.5		28	NI/A	40	12				
					1010	020	200	21.0	DOLI	20	19/1	40	12				
Linet tr								014/17			-						
Prohoal	min:	mbiont	ient Internascteme max /N/A							:e	Company Authorization						
Freneat min. Amu		Indent		merpassi	emp.max.	IN/A				-							
			-	Interpasst	emp.min.:	N/A											
											Date:						

Figure 7.49: Welding Procedure Data Sheet for FCAW

BMT Elect Technology						WELDING PROCEDURE DATA SHEET				WPDS NO.: DATE:	T-MCAW- 26-Jun-08	-2F 3	Rev.:				
			PMT Elect Technology							Def. Stendarder							
Company Name: Address:			BMT Fleet Technology							Ref. Standards:							
			STI Leggel Drive Kanata, Ontario KZK 128								Ref. WPS:						
Welding Processes:		ses:	1	T-MCAW		_	Pulsed: Yes	✓ No	2				Pulsed:	Yes No			
Shielding Gas Type:		ype:	85Ar/15C02						-				_				
Positions:			Horizonta	I (2F)	Comi Auto		Machine	ALCONO.	Join	t Configuration	n & Pass/L	ayer Seque	nce				
Process Mode:			Butt / Tee Corper Lan Edge														
Penetration:		-	Complete Partial FTT= V Fillet							1001	→ ^T ←						
Backing:			Material: N/A Thickness: N/A								m		1	s /			
Backgouging:			Yes	Method:	N/A							/	V				
			No	Depth:	N/A			2. Addition				/					
Electroo	Electrode Extension:		contact tip to work distance = 19mm to 25mm									1					
Nozzle Diameter(s):		r(s):	7/8" to 3/4"								and the second	/					
Flux Cla	assificati	on:	N/A										1				
Tungsten Electrode:		ode:	Type: N/A Dia.: N/A								1	1		PROPERTY			
Cleaning Procedures			As Kequirea: Unipping, wire brush, wire wheel														
													3	It.			
CSA W	186 Reb	ar	Direct Solice Indirect Solice Ian Solice						10.0000		Sty and the			1			
Splice 7	Гуре:		Rebar to Structural Member Only											19522122.53			
Identifi	cation o	f Bas	e Materia	I(for CSA \	V186 indicat	e carbon e	quivalent, max. pho	sphorus &	sulphur o	content)							
Part				S	pecification a	& Grade				Thickr	ness or Dia.		Special	Requirements			
1	HSLA 8	0								3/16"							
11	II HSLA 80										3/16"						
Identifi	cation o	f Fille	r Materia	1													
Pro	Cess		Trade Name				Classification				Group		Filler Trea	atment			
T-MCAW Trim		Trima	ark Metalloy 100				E100C-G										
Malalia	- Deve							_									
Thick-	Weld	leters		Pass	Welding	Dia	Wire Feed Speed	/ire Feed Sneed Current			Welding	Burn-Off Gas Flo		Heat Input			
ness (In.)	Size/ ETT		Layer	Number	Process	(in.)	(IPM)	A	V	Polarity	Speed (IPM)	Rate ()	Rate (CFH	(kJ/in)			
						Ba	se Material in P	rimed C	onditio	n				7.00			
		Lead	Wire														
	3/16		1	1	T-MCAW	.045	500	280	26	DCEP	60	N/A	45				
3/16		Trail	Wire											28			
			1	1	T-MCAW	.045	350	250	27	DCEP	60	N/A	45				
	_					Bas	e Material with	Primer	Remov	ed							
		Lead	Wire	1 4	THOMAS	0.15		0.15		0.050							
0/40	3/16 1	7.11	1	1	I-MCAW	.045	500	315	23	DCEP	90	N/A	45				
3/16		Trail	Wire	1 4	THOMA	0.45	074	050	00.5	DOFD	00		1. 15	18			
			1	1	T-MCAW	.045	374	258	23.5	DCEP	90	N/A	45				
Prohoat	eatment	Ambi	opt		Internacetor		NVA	<u> </u>	CWB	Acceptanc	ce	Co	mpany Aut	horization			
Fiellea	c mm.	Anos	ent		interpassier	np.max	N/A	4									
Doword	Power Supplies: ESAB Aristomia 450										0						
Program: MIG/MAG, DIP/SPRAY, FE Metal Cored, Ar+8%C02, 1.2mm																	
Lead and trail wires set at 80% Inductance with synergic mode on																	
Start Data: 0.1s preflow, creep start: no, hot start: yes, 0.5s time																	
lead wire speed: 402, trail wire speed: 303																	
												Date:					

Figure 7.50: Welding Procedure Data Sheet for T-MCAW

APPENDIX A

DISTORTION PLOTS FOR GROOVE WELDS

PLATE 1 – SIDE 1

Figure 1: Transverse Section A1

Evaluation of Advanced Gas Metal Arc Welding and Distortion Mitigation Techniques for Thin Panel Steel and Aluminum Structures

Figure 3: Transverse Section A3

Figure 4: Transverse Section A5

Evaluation of Advanced Gas Metal Arc Welding and Distortion Mitigation Techniques for Thin Panel Steel and Aluminum Structures

Figure 5: Transverse Section A7

Figure 6: Transverse Section A9

Evaluation of Advanced Gas Metal Arc Welding and Distortion Mitigation Techniques for Thin Panel Steel and Aluminum Structures

Figure 7: Transverse Section A11

Figure 8: Transverse Section A13

Evaluation of Advanced Gas Metal Arc Welding and Distortion Mitigation Techniques for Thin Panel Steel and Aluminum Structures

Figure 9: Transverse Section A15

Evaluation of Advanced Gas Metal Arc Welding and Distortion Mitigation Techniques for Thin Panel Steel and Aluminum Structures

Figure 11: Transverse Section A19

Figure 12: Transverse Section A20

Evaluation of Advanced Gas Metal Arc Welding and Distortion Mitigation Techniques for Thin Panel Steel and Aluminum Structures

Figure 13: Transverse Section A21

Figure 14: Transverse Section A22

Evaluation of Advanced Gas Metal Arc Welding and Distortion Mitigation Techniques for Thin Panel Steel and Aluminum Structures

Figure 15: Longitudinal Section A

Figure 16: Longitudinal Section B

Figure 17: Longitudinal Section C

Evaluation of Advanced Gas Metal Arc Welding and Distortion Mitigation Techniques for Thin Panel Steel and Aluminum Structures

Figure 19: Longitudinal Section E

Evaluation of Advanced Gas Metal Arc Welding and Distortion Mitigation Techniques for Thin Panel Steel and Aluminum Structures

Evaluation of Advanced Gas Metal Arc Welding and Distortion Mitigation Techniques for Thin Panel Steel and Aluminum Structures

Figure 23: Longitudinal Section I

Figure 24: Longitudinal Section J

Figure 25: Longitudinal Section K

Figure 26: Longitudinal Section L

Figure 27: Net Plate Deformation after Welding

Figure 1: Transverse Section A1

Evaluation of Advanced Gas Metal Arc Welding and Distortion Mitigation Techniques for Thin Panel Steel and Aluminum Structures

Figure 3: Transverse Section A3

Figure 4: Transverse Section A5

Evaluation of Advanced Gas Metal Arc Welding and Distortion Mitigation Techniques for Thin Panel Steel and Aluminum Structures

Figure 5: Transverse Section A7

Figure 6: Transverse Section A9

Evaluation of Advanced Gas Metal Arc Welding and Distortion Mitigation Techniques for Thin Panel Steel and Aluminum Structures

Figure 7: Transverse Section A11

Figure 8: Transverse Section A13

Evaluation of Advanced Gas Metal Arc Welding and Distortion Mitigation Techniques for Thin Panel Steel and Aluminum Structures

Figure 9: Transverse Section A15

Figure 10: Transverse Section A17

Evaluation of Advanced Gas Metal Arc Welding and Distortion Mitigation Techniques for Thin Panel Steel and Aluminum Structures

Figure 11: Transverse Section A19

Figure 12: Transverse Section A20

Evaluation of Advanced Gas Metal Arc Welding and Distortion Mitigation Techniques for Thin Panel Steel and Aluminum Structures

Figure 13: Transverse Section A21

Figure 14: Transverse Section A22

Evaluation of Advanced Gas Metal Arc Welding and Distortion Mitigation Techniques for Thin Panel Steel and Aluminum Structures

Figure 15: Longitudinal Section A

Figure 16: Longitudinal Section B

Figure 17: Longitudinal Section C

Evaluation of Advanced Gas Metal Arc Welding and Distortion Mitigation Techniques for Thin Panel Steel and Aluminum Structures

Evaluation of Advanced Gas Metal Arc Welding and Distortion Mitigation Techniques for Thin Panel Steel and Aluminum Structures

Evaluation of Advanced Gas Metal Arc Welding and Distortion Mitigation Techniques for Thin Panel Steel and Aluminum Structures

Figure 23: Longitudinal Section I

Evaluation of Advanced Gas Metal Arc Welding and Distortion Mitigation Techniques for Thin Panel Steel and Aluminum Structures

Figure 25: Longitudinal Section K

Evaluation of Advanced Gas Metal Arc Welding and Distortion Mitigation Techniques for Thin Panel Steel and Aluminum Structures

Figure 27: Net Plate Deformation after Welding

PLATE 2 – SIDE 1

Figure 1: Transverse Section A1

Figure 2: Transverse Section A2

Evaluation of Advanced Gas Metal Arc Welding and Distortion Mitigation Techniques for Thin Panel Steel and Aluminum Structures

Figure 3: Transverse Section A3

Evaluation of Advanced Gas Metal Arc Welding and Distortion Mitigation Techniques for Thin Panel Steel and Aluminum Structures

Figure 4: Transverse Section A5

Figure 5: Transverse Section A7

Evaluation of Advanced Gas Metal Arc Welding and Distortion Mitigation Techniques for Thin Panel Steel and Aluminum Structures

Figure 6: Transverse Section A9

Figure 9: Transverse Section A15

Figure 10: Transverse Section A17

Evaluation of Advanced Gas Metal Arc Welding and Distortion Mitigation Techniques for Thin Panel Steel and Aluminum Structures

Figure 11: Transverse Section A19

Evaluation of Advanced Gas Metal Arc Welding and Distortion Mitigation Techniques for Thin Panel Steel and Aluminum Structures

Figure 13: Transverse Section A21

Evaluation of Advanced Gas Metal Arc Welding and Distortion Mitigation Techniques for Thin Panel Steel and Aluminum Structures

Figure 15: Longitudinal Section A

Figure 16: Longitudinal Section B

Evaluation of Advanced Gas Metal Arc Welding and Distortion Mitigation Techniques for Thin Panel Steel and Aluminum Structures

Figure 19: Longitudinal Section E

Evaluation of Advanced Gas Metal Arc Welding and Distortion Mitigation Techniques for Thin Panel Steel and Aluminum Structures

Evaluation of Advanced Gas Metal Arc Welding and Distortion Mitigation Techniques for Thin Panel Steel and Aluminum Structures

Figure 23: Longitudinal Section I

Evaluation of Advanced Gas Metal Arc Welding and Distortion Mitigation Techniques for Thin Panel Steel and Aluminum Structures

Figure 25: Longitudinal Section K

Evaluation of Advanced Gas Metal Arc Welding and Distortion Mitigation Techniques for Thin Panel Steel and Aluminum Structures

Figure 27: Net Plate Deformation after Welding (No Weld No Tension- Weld With Tension)

PLATE 3 – SIDE 1

Figure 1: Transverse Section A1

Evaluation of Advanced Gas Metal Arc Welding and Distortion Mitigation Techniques for Thin Panel Steel and Aluminum Structures

Figure 3: Transverse Section A3

Evaluation of Advanced Gas Metal Arc Welding and Distortion Mitigation Techniques for Thin Panel Steel and Aluminum Structures

Figure 4: Transverse Section A5

Figure 5: Transverse Section A7

Evaluation of Advanced Gas Metal Arc Welding and Distortion Mitigation Techniques for Thin Panel Steel and Aluminum Structures

Figure 6: Transverse Section A9

Figure 7: Transverse Section A11

Evaluation of Advanced Gas Metal Arc Welding and Distortion Mitigation Techniques for Thin Panel Steel and Aluminum Structures

Figure 9: Transverse Section A15

Figure 10: Transverse Section A17

Evaluation of Advanced Gas Metal Arc Welding and Distortion Mitigation Techniques for Thin Panel Steel and Aluminum Structures

Figure 11: Transverse Section A19

Evaluation of Advanced Gas Metal Arc Welding and Distortion Mitigation Techniques for Thin Panel Steel and Aluminum Structures

Figure 13: Transverse Section A21

Evaluation of Advanced Gas Metal Arc Welding and Distortion Mitigation Techniques for Thin Panel Steel and Aluminum Structures

Figure 15: Longitudinal Section A

Figure 16: Longitudinal Section B

Evaluation of Advanced Gas Metal Arc Welding and Distortion Mitigation Techniques for Thin Panel Steel and Aluminum Structures

Evaluation of Advanced Gas Metal Arc Welding and Distortion Mitigation Techniques for Thin Panel Steel and Aluminum Structures

Figure 21: Longitudinal Section G

Evaluation of Advanced Gas Metal Arc Welding and Distortion Mitigation Techniques for Thin Panel Steel and Aluminum Structures

Figure 23: Longitudinal Section I

Evaluation of Advanced Gas Metal Arc Welding and Distortion Mitigation Techniques for Thin Panel Steel and Aluminum Structures

Figure 25: Longitudinal Section K

Evaluation of Advanced Gas Metal Arc Welding and Distortion Mitigation Techniques for Thin Panel Steel and Aluminum Structures

Figure 27: Net Plate Deformation (No Weld -Weld under Tension)

Figure 28: Net Plate Deformation after Welding (No Weld Tension-Weld under Tension)

PLATE 3 – SIDE 2

Figure 1: Transverse Section A1

Figure 2: Transverse Section A2

Figure 3: Transverse Section A3

Figure 4: Transverse Section A5

Evaluation of Advanced Gas Metal Arc Welding and Distortion Mitigation Techniques for Thin Panel Steel and Aluminum Structures

Figure 5: Transverse Section A7

Figure 6: Transverse Section A9

Evaluation of Advanced Gas Metal Arc Welding and Distortion Mitigation Techniques for Thin Panel Steel and Aluminum Structures

Figure 7: Transverse Section A11

Figure 8: Transverse Section A13

Evaluation of Advanced Gas Metal Arc Welding and Distortion Mitigation Techniques for Thin Panel Steel and Aluminum Structures

Figure 9: Transverse Section A15

Figure 10: Transverse Section A17

Figure 11: Transverse Section A19

Figure 12: Transverse Section A20

Figure 13: Transverse Section A21

Figure 14: Transverse Section A22

Figure 15: Longitudinal Section A

Figure 16: Longitudinal Section B

Evaluation of Advanced Gas Metal Arc Welding and Distortion Mitigation Techniques for Thin Panel Steel and Aluminum Structures

Evaluation of Advanced Gas Metal Arc Welding and Distortion Mitigation Techniques for Thin Panel Steel and Aluminum Structures

Evaluation of Advanced Gas Metal Arc Welding and Distortion Mitigation Techniques for Thin Panel Steel and Aluminum Structures

Evaluation of Advanced Gas Metal Arc Welding and Distortion Mitigation Techniques for Thin Panel Steel and Aluminum Structures

Figure 27: Net Plate Deformation after Welding (No Weld -Weld under Tension)

Figure 29: Net Plate Deformation under Tension (No Weld with Tension-Weld under Tension)

PLATE 4 – SIDE 1

Figure 1: Transverse Section A1

Evaluation of Advanced Gas Metal Arc Welding and Distortion Mitigation Techniques for Thin Panel Steel and Aluminum Structures

Figure 3: Transverse Section A3

Figure 4: Transverse Section A5

Figure 5: Transverse Section A7

Figure 6: Transverse Section A9

Figure 7: Transverse Section A11

Figure 8: Transverse Section A13

Figure 9: Transverse Section A15

Figure 10: Transverse Section A17

Figure 11: Transverse Section A19

Figure 12: Transverse Section A20

Figure 13: Transverse Section A21

Figure 14: Transverse Section A22

Figure 15: Longitudinal Section A

Figure 16: Longitudinal Section B

Evaluation of Advanced Gas Metal Arc Welding and Distortion Mitigation Techniques for Thin Panel Steel and Aluminum Structures

Evaluation of Advanced Gas Metal Arc Welding and Distortion Mitigation Techniques for Thin Panel Steel and Aluminum Structures

Figure 21: Longitudinal Section G

Figure 22: Longitudinal Section H

Figure 23: Longitudinal Section I

Figure 24: Longitudinal Section J

Figure 25: Longitudinal Section K

Figure 26: Longitudinal Section L

Figure 27: Net Plate Deformation (No Weld No Tension - Weld under Tension)

Figure 28: Net Plate Deformation after Welding (Tension Case) (No Weld with Tension-Weld under Tension)

Figure 29: Net Plate Deformation before Welding (No Weld) (No Weld No Tension-No Weld with Tension)

PLATE 4 – SIDE 2

Figure 1: Transverse Section A1

Figure 2: Transverse Section A2

Evaluation of Advanced Gas Metal Arc Welding and Distortion Mitigation Techniques for Thin Panel Steel and Aluminum Structures

Figure 3: Transverse Section A3

Figure 4: Transverse Section A5

Figure 5: Transverse Section A7

Figure 6: Transverse Section A9

Figure 7: Transverse Section A11

Figure 8: Transverse Section A13

Figure 9: Transverse Section A15

Figure 10: Transverse Section A17

Figure 11: Transverse Section A19

Figure 12: Transverse Section A20

Figure 13: Transverse Section A21

Figure 14: Transverse Section A22

Figure 15: Longitudinal Section A

Figure 16: Longitudinal Section B

Evaluation of Advanced Gas Metal Arc Welding and Distortion Mitigation Techniques for Thin Panel Steel and Aluminum Structures

Figure 19: Longitudinal Section E

Evaluation of Advanced Gas Metal Arc Welding and Distortion Mitigation Techniques for Thin Panel Steel and Aluminum Structures

Figure 22: Longitudinal Section H

Figure 23: Longitudinal Section I

Figure 24: Longitudinal Section J

Figure 25: Longitudinal Section K

Figure 26: Longitudinal Section L

Figure 27: Net Plate Deformation (No Weld No Tension - Weld under Tension)

Figure 28: Net Plate Deformation after Welding (No Weld with Tension-Weld under Tension)

Figure 29: Net Plate Deformation before Welding (No Weld No Tension-No Weld with Tension)

Figure 1: Transverse Section A1

Evaluation of Advanced Gas Metal Arc Welding and Distortion Mitigation Techniques for Thin Panel Steel and Aluminum Structures

Figure 3: Transverse Section A3

Figure 4: Transverse Section A5

Evaluation of Advanced Gas Metal Arc Welding and Distortion Mitigation Techniques for Thin Panel Steel and Aluminum Structures

Figure 5: Transverse Section A7

Figure 6: Transverse Section A9

Evaluation of Advanced Gas Metal Arc Welding and Distortion Mitigation Techniques for Thin Panel Steel and Aluminum Structures

Figure 7: Transverse Section A11

Figure 8: Transverse Section A13

Evaluation of Advanced Gas Metal Arc Welding and Distortion Mitigation Techniques for Thin Panel Steel and Aluminum Structures

Figure 9: Transverse Section A15

Figure 10: Transverse Section A17

Evaluation of Advanced Gas Metal Arc Welding and Distortion Mitigation Techniques for Thin Panel Steel and Aluminum Structures

Figure 11: Transverse Section A19

Evaluation of Advanced Gas Metal Arc Welding and Distortion Mitigation Techniques for Thin Panel Steel and Aluminum Structures

Figure 13: Transverse Section A21

Evaluation of Advanced Gas Metal Arc Welding and Distortion Mitigation Techniques for Thin Panel Steel and Aluminum Structures

Figure 15: Longitudinal Section A

Figure 16: Longitudinal Section B

Figure 17: Longitudinal Section C

Evaluation of Advanced Gas Metal Arc Welding and Distortion Mitigation Techniques for Thin Panel Steel and Aluminum Structures

Figure 19: Longitudinal Section E

Figure 21: Longitudinal Section G

Evaluation of Advanced Gas Metal Arc Welding and Distortion Mitigation Techniques for Thin Panel Steel and Aluminum Structures

Figure 23: Longitudinal Section I

Evaluation of Advanced Gas Metal Arc Welding and Distortion Mitigation Techniques for Thin Panel Steel and Aluminum Structures

Figure 25: Longitudinal Section K

Evaluation of Advanced Gas Metal Arc Welding and Distortion Mitigation Techniques for Thin Panel Steel and Aluminum Structures

Figure 27: Net Plate Deformation (No Weld No Tension - Weld under Tension)

Figure 28: Plate Deformation after Welding (No Weld with Tension-Weld under Tension)

Figure 29: Plate Deformation before Welding (No Weld No Tension-No Weld with Tension)

Figure 30: Plate Deformation before Welding (Base Support-No Weld with Tension)

PLATE 5 – SIDE 2

Figure 1: Transverse Section A1

Figure 2: Transverse Section A2

Evaluation of Advanced Gas Metal Arc Welding and Distortion Mitigation Techniques for Thin Panel Steel and Aluminum Structures

Figure 3: Transverse Section A3

Figure 4: Transverse Section A5

Evaluation of Advanced Gas Metal Arc Welding and Distortion Mitigation Techniques for Thin Panel Steel and Aluminum Structures

Figure 5: Transverse Section A7

Figure 6: Transverse Section A9

Evaluation of Advanced Gas Metal Arc Welding and Distortion Mitigation Techniques for Thin Panel Steel and Aluminum Structures

Figure 7: Transverse Section A11

Figure 8: Transverse Section A13

Evaluation of Advanced Gas Metal Arc Welding and Distortion Mitigation Techniques for Thin Panel Steel and Aluminum Structures

Figure 9: Transverse Section A15

Figure 10: Transverse Section A17

Evaluation of Advanced Gas Metal Arc Welding and Distortion Mitigation Techniques for Thin Panel Steel and Aluminum Structures

Figure 11: Transverse Section A19

Evaluation of Advanced Gas Metal Arc Welding and Distortion Mitigation Techniques for Thin Panel Steel and Aluminum Structures

Figure 13: Transverse Section A21

Figure 14: Transverse Section A22

Evaluation of Advanced Gas Metal Arc Welding and Distortion Mitigation Techniques for Thin Panel Steel and Aluminum Structures

Figure 15: Longitudinal Section A

Figure 16: Longitudinal Section B

Evaluation of Advanced Gas Metal Arc Welding and Distortion Mitigation Techniques for Thin Panel Steel and Aluminum Structures

Evaluation of Advanced Gas Metal Arc Welding and Distortion Mitigation Techniques for Thin Panel Steel and Aluminum Structures

Evaluation of Advanced Gas Metal Arc Welding and Distortion Mitigation Techniques for Thin Panel Steel and Aluminum Structures

Figure 23: Longitudinal Section I

Distance from edge, mm

Evaluation of Advanced Gas Metal Arc Welding and Distortion Mitigation Techniques for Thin Panel Steel and Aluminum Structures

Figure 25: Longitudinal Section K

Figure 26: Longitudinal Section L

Figure 27: Net Plate Deformation (No Weld No Tension - Weld under Tension)

Figure 28: Plate Deformation under Tension (No Weld with Tension-Weld under Tension)

Figure 29: Plate Deformation before Welding (No Weld No Tension-No Weld with Tension)

PLATE 6 – SIDE 1

Evaluation of Advanced Gas Metal Arc Welding and Distortion Mitigation Techniques for Thin Panel Steel and Aluminum Structures

Figure 3: Transverse Section A3

Figure 4: Transverse Section A5

Evaluation of Advanced Gas Metal Arc Welding and Distortion Mitigation Techniques for Thin Panel Steel and Aluminum Structures

Figure 5: Transverse Section A7

Figure 6: Transverse Section A9

Evaluation of Advanced Gas Metal Arc Welding and Distortion Mitigation Techniques for Thin Panel Steel and Aluminum Structures

Figure 7: Transverse Section A11

Figure 8: Transverse Section A13

Evaluation of Advanced Gas Metal Arc Welding and Distortion Mitigation Techniques for Thin Panel Steel and Aluminum Structures

Figure 9: Transverse Section A15

Figure 10: Transverse Section A17

Evaluation of Advanced Gas Metal Arc Welding and Distortion Mitigation Techniques for Thin Panel Steel and Aluminum Structures

Figure 11: Transverse Section A19

Figure 12: Transverse Section A20

Evaluation of Advanced Gas Metal Arc Welding and Distortion Mitigation Techniques for Thin Panel Steel and Aluminum Structures

Figure 13: Transverse Section A21

Evaluation of Advanced Gas Metal Arc Welding and Distortion Mitigation Techniques for Thin Panel Steel and Aluminum Structures

Figure 15: Longitudinal Section A

Figure 16: Longitudinal Section B

Figure 17: Longitudinal Section C

Evaluation of Advanced Gas Metal Arc Welding and Distortion Mitigation Techniques for Thin Panel Steel and Aluminum Structures

Figure 19: Longitudinal Section E

Evaluation of Advanced Gas Metal Arc Welding and Distortion Mitigation Techniques for Thin Panel Steel and Aluminum Structures

Figure 23: Longitudinal Section I

Figure 24: Longitudinal Section J

Figure 25: Longitudinal Section K

Figure 26: Longitudinal Section L

Figure 27: Net Plate Deformation after Welding

PLATE 6 – SIDE 2A

Figure 1: Transverse Section A1

Figure 2: Transverse Section A2

Evaluation of Advanced Gas Metal Arc Welding and Distortion Mitigation Techniques for Thin Panel Steel and Aluminum Structures

Figure 3: Transverse Section A3

Figure 4: Transverse Section A5

Evaluation of Advanced Gas Metal Arc Welding and Distortion Mitigation Techniques for Thin Panel Steel and Aluminum Structures

Figure 5: Transverse Section A7

Figure 6: Transverse Section A9

Evaluation of Advanced Gas Metal Arc Welding and Distortion Mitigation Techniques for Thin Panel Steel and Aluminum Structures

Figure 7: Transverse Section A11

Figure 8: Transverse Section A13

Evaluation of Advanced Gas Metal Arc Welding and Distortion Mitigation Techniques for Thin Panel Steel and Aluminum Structures

Figure 9: Transverse Section A15

Figure 10: Transverse Section A17

Evaluation of Advanced Gas Metal Arc Welding and Distortion Mitigation Techniques for Thin Panel Steel and Aluminum Structures

Figure 11: Transverse Section A19

Figure 12: Transverse Section A20

Evaluation of Advanced Gas Metal Arc Welding and Distortion Mitigation Techniques for Thin Panel Steel and Aluminum Structures

Figure 13: Transverse Section A21

Evaluation of Advanced Gas Metal Arc Welding and Distortion Mitigation Techniques for Thin Panel Steel and Aluminum Structures

Figure 15: Longitudinal Section A

Figure 16: Longitudinal Section B

Evaluation of Advanced Gas Metal Arc Welding and Distortion Mitigation Techniques for Thin Panel Steel and Aluminum Structures

Figure 19: Longitudinal Section E

Evaluation of Advanced Gas Metal Arc Welding and Distortion Mitigation Techniques for Thin Panel Steel and Aluminum Structures

Evaluation of Advanced Gas Metal Arc Welding and Distortion Mitigation Techniques for Thin Panel Steel and Aluminum Structures

Figure 23: Longitudinal Section I

Figure 24: Longitudinal Section J

Figure 25: Longitudinal Section K

Figure 26: Longitudinal Section L

Figure 27: Net Plate Deformation after Welding

PLATE 6 – SIDE 2B

Figure 1: Transverse Section A1

Figure 2: Transverse Section A2

Evaluation of Advanced Gas Metal Arc Welding and Distortion Mitigation Techniques for Thin Panel Steel and Aluminum Structures

Figure 3: Transverse Section A3

Figure 4: Transverse Section A5

Evaluation of Advanced Gas Metal Arc Welding and Distortion Mitigation Techniques for Thin Panel Steel and Aluminum Structures

Figure 5: Transverse Section A7

Figure 6: Transverse Section A9

Evaluation of Advanced Gas Metal Arc Welding and Distortion Mitigation Techniques for Thin Panel Steel and Aluminum Structures

Figure 7: Transverse Section A11

Figure 8: Transverse Section A13

Evaluation of Advanced Gas Metal Arc Welding and Distortion Mitigation Techniques for Thin Panel Steel and Aluminum Structures

Figure 9: Transverse Section A15

Figure 10: Transverse Section A17

Evaluation of Advanced Gas Metal Arc Welding and Distortion Mitigation Techniques for Thin Panel Steel and Aluminum Structures

Figure 11: Transverse Section A19

Figure 12: Transverse Section A20

Evaluation of Advanced Gas Metal Arc Welding and Distortion Mitigation Techniques for Thin Panel Steel and Aluminum Structures

Figure 13: Transverse Section A21

Figure 14: Transverse Section A22

Evaluation of Advanced Gas Metal Arc Welding and Distortion Mitigation Techniques for Thin Panel Steel and Aluminum Structures

Figure 15: Longitudinal Section A

Figure 16: Longitudinal Section B

Evaluation of Advanced Gas Metal Arc Welding and Distortion Mitigation Techniques for Thin Panel Steel and Aluminum Structures

Figure 19: Longitudinal Section E

Evaluation of Advanced Gas Metal Arc Welding and Distortion Mitigation Techniques for Thin Panel Steel and Aluminum Structures

Evaluation of Advanced Gas Metal Arc Welding and Distortion Mitigation Techniques for Thin Panel Steel and Aluminum Structures

Evaluation of Advanced Gas Metal Arc Welding and Distortion Mitigation Techniques for Thin Panel Steel and Aluminum Structures

Evaluation of Advanced Gas Metal Arc Welding and Distortion Mitigation Techniques for Thin Panel Steel and Aluminum Structures

Figure 27: Net Plate Deformation after Welding

APPENDIX B

DISTORTION PLOTS FOR FILLET WELDS (STT and FCAW Processes)

	Before Weld										
Dis	olacemer	nt w.r.t to	Frame, r	nm							
	Α	Т	В	Abs Diff							
1	9	67	6.5	2.5							
2	8.5	66.5	6	2.5							
3	6.5	65	4.5	2							
4	6	63.5	4	2							
5	5	62	3	2							
6	3.5	60.5	1.5	2							
7	2.5	59.25	0.5	2							
8	2	58	0.5	1.5							
9	1.5	56.75	0.5	1							
10	0	55.5	0	0							
11	1	55.25	0	1							
12	1	55	0.5	0.5							
13	1.5	54.5	0.5	1							
14	1	54	0.5	0.5							
15	1.5	54.25	0.5	1							
16	2.5	54.5	1.5	1							
17	3	55	1.5	1.5							
18	3.5	55.5	2.5	1							
19	5.5	56.5	3.5	2							
20	6.5	57.5	5	1.5							
21	8	58.5	6	2							
22	9	59	7	2							
23	10	59.5	8	2							

Table B1: STT_Stiff_1_Benchmark Distortion Data

	After Weld									
	Displace	ment w.r.	t to Fram	e, mm						
	Α	Т	В	Abs Diff						
1	6.5	65.5	5	1.5						
2	6.5	65	5	1.5						
3	5.5	64	3.5	2						
4	5.5	63	4	1.5						
5	5	61.25	3.5	1.5						
6	3.5	59.5	2.5	1						
7	3	58.5	2	1						
8	2.5	57.5	1.5	1						
9	2	56.5	2	0						
10	1.5	55.5	1.5	0						
11	2	55.5	1.5	0.5						
12	2.5	55.5 2		0.5						
13	2.5	55	2	0.5						
14	2	54.5	2	0						
15	2.5	54.75	2.5	0						
16	3.5	55	3	0.5						
17	4	55.25	3	1						
18	4.5	55.5	4	0.5						
19	5.5	56.25	5	0.5						
20	6.5	57	6	0.5						
21	6.5	57.5	6	0.5						
22	6.5	58	6.5	0						
23	7.5	58.5	7.5	0						

Table B2: FCAW Stiff 1 Benchmark Distortion Data

	Before Weld									
Di	splacem	ent w.r.t t	to Frame	, mm						
	Α	Т	В	Abs Diff						
1	7	55	9.5	2.5						
2	6.5	55	9	2.5						
3	5	54	7.5	2.5						
4	4.5	53	6.5	2						
5	3.5	51.75	5.5	2						
6	2.5	50.5	3.5	1						
7	2	50	3	1						
8	1.5	49.5	2	0.5						
9	1.5	49	1.5	0						
10	0.5	48.5	0.5	0						
11	1	49	1	0						
12	1.5	49.5	1.5	0						
13	1.5	49.5	1.5	0						
14	1	49.5	1.5	0.5						
15	2	50.5	2	0						
16	2.5	51.5	3	0.5						
17	3	52.5	3.5	0.5						
18	3.5	53.5	5	1.5						
19	5	55	6	1						
20	6.5	56.5	7.5	1						
21	7.5	58	8.5	1						
22	8	58.75	9	1						
23	8.5	59.5	9.5	1						

After Weld										
[Displace	ment w.r.	t to Fram	ie, mm						
	A	Т	В	Abs Diff						
1	3.5	53	9	5.5						
2	3	53	8.5	5.5						
3	2.5	52.25	7	4.5						
4	2	51.5	6.5	4.5						
5	2	50.5	5.5	3.5						
6	2	49.5	4	2						
7	2	49.25	3.5	1.5						
8	2	49	3	1						
9	2	48.75	2.5	0.5						
10	2	48.5	2	0						
11	2.5	49	2	0.5						
12	3	49.5	2.5	0.5						
13	3	49.5	2.5	0.5						
14	2.5	49.5	2	0.5						
15	3	50.25	2.5	0.5						
16	3	51	3	0						
17	3	51.5	3.5	0.5						
18	3.5	52	4.5	1						
19	4.5	53	5	0.5						
20	4.5	54	6	1.5						
21	3.5	54.5	5	1.5						
22	4.5	55	5	0.5						
23	5	55.5	5.5	0.5						

	B	efore V	Veld		Tension No Weld					After Weld				
D	isplacem	nent w.r.t	to Frame	e, mm	Di	splacem	ent w.r.t	to Frame	e, mm	Dis	splacem	<mark>ent w.r.t t</mark>	o Frame,	, mm
	Α	Т	В	Abs Diff		Α	Т	В	Abs Diff		Α	Т	В	Abs Diff
1	10	57.5	10	0	1	5	54.5	4	1	1	3	52.5	2.5	0.5
2	9	57	8	1	2	5	54.5	4	1	2	3	52.5	2.5	0.5
3	7	56.25	6.5	0.5	3	4	53.5	3	1	3	2	51.5	1.5	0.5
4	6.5	55.5	5.5	1	4	4.5	52.5	3	1.5	4	3	50.5	2.5	0.5
5	5	54	4.5	0.5	5	3.5	51.25	2	1.5	5	2.5	49.75	2	0.5
6	4	52.5	3	1	6	2	50	0.5	1.5	6	1.5	49	1	0.5
7	3	51.5	2	1	7	1	49.5	0	1	7	1.5	48.75	1	0.5
8	2	50.5	1.5	0.5	8	0.5	49	0	0.5	8	1.5	48.5	1	0.5
9	1.5	50	1	0.5	9	0	48.5	0	0	9	1.5	48.5	1	0.5
10	1	49.5	0.5	0.5	10	0	48	0	0	10	1.5	48.5	1	0.5
11	1.5	50	0.5	1	11	0.5	48.75	0	0.5	11	1.5	49	1	0.5
12	1.5	50.5	0.5	1	12	0.5	49.5	0	0.5	12	2	49.5	1.5	0.5
13	2	50.5	1	1	13	1	49.25	0	1	13	2	49.75	1.5	0.5
14	1.5	50.5	1	0.5	14	0.5	49	0	0.5	14	2	50	1	1
15	2	51.25	1	1	15	1	50.25	0	1	15	2.5	50.5	2	0.5
16	2	52	1.5	0.5	16	1	51.5	0	1	16	2.5	51	2	0.5
17	2.5	52.75	1.5	1	17	1	51.75	0.5	0.5	17	2.5	51.5	2	0.5
18	4	53.5	2.5	1.5	18	2.5	52	1.5	1	18	3.5	52	2.5	1
19	5.5	54.75	3	2.5	19	3.5	53.75	2.5	1	19	5	53	3.5	1.5
20	7	56	4.5	2.5	20	4.5	55.5	3.5	1	20	5	54	3.5	1.5
21	8	58	4.5	3.5	21	2.5	56	2	0.5	21	3	56	1.5	1.5
22	8.5	58.5	6	2.5	22	2.5	57	2	0.5	22	3	56.25	1.5	1.5
23	9.5	59	7	2.5	23	2.5	58	2	0.5	23	3	56.5	1.5	1.5

Table B3: FCAW_Stiff_2 Distortion Data

Table B4: FCAW_Stiff_3 Distortion Data

	B	efore V	Veld			Tension No Weld						After Weld					
Di	isplacem	nent w.r.t	to Frame	e, mm	Dis	Displacement w.r.t to Frame, mm					Di	splaceme	ent w.r.t t	to Frame	, mm		
	Α	Т	В	Abs Diff		Α	Т	В	Abs Diff			Α	Т	В	Abs Dif		
1	10	57	9.5	0.5		1 3	54	4	1		1	0.5	53.5	2.5	2		
2	9	56.5	8	1		2 3	53.5	4	1		2	1	53.5	3.5	2.5		
3	6.5	55.25	6	0.5		3 2	52.75	3	1		3	1	52.5	3	2		
4	6	54	5	1	4	4 3	52	3.5	0.5		4	1.5	51.5	3	1.5		
5	5	52.5	3.5	1.5		5 2	51	2.5	0.5		5	1	50.5	2.5	1.5		
6	3.5	51	2	1.5		6 1	50	1	0		6	0.5	49.5	1.5	1		
7	2	50.25	1	1	-	0.5	49.25	0	0.5		7	1	49	1	0		
8	1.5	49.5	0.5	1		B 0.5	48.5	0	0.5		8	1	48.5	0.5	0.5		
9	1	48.75	0	1		90	47.75	0	0		9	1	48.25	0	1		
10	0	48	0	0	10	0 0	47	0.5	0.5		10	0.5	48	0.5	0		
11	0.5	48.25	0	0.5	1'	1 0.5	47.5	0	0.5		11	1	48.5	1.5	0.5		
12	1	48.5	0	1	12	2 0.5	48	0	0.5		12	1	49	1.5	0.5		
13	1	48.5	0.5	0.5	1:	3 0.5	47.75	0	0.5		13	1	49	2	1		
14	0.5	48.5	0	0.5	14	4 0	47.5	0	0		14	0.5	49	1.5	1		
15	1	49.25	0.5	0.5	1	5 0	48.25	0	0		15	0.5	49.5	2	1.5		
16	2	50	1.5	0.5	10	6 0.5	49	0	0.5		16	1	50	2.5	1.5		
17	2.5	51	2.5	0	17	7 0.5	49.5	1	0.5		17	0.5	50.5	3	2.5		
18	4	52	4	0	18	B 1.5	50	1.5	0		18	1.5	51	3.5	2		
19	5.5	53.75	5.5	0	19	9 2	51	3	1		19	3	52	4.5	1.5		
20	7	55.5	7.5	0.5	20	0 3.5	52	4.5	1		20	4	53	5	1		
21	8.5	57	9	0.5	2	1 3.5	53.5	4	0.5		21	3	54	5.5	2.5		
22	9.5	58	10.5	1	2:	2 3.5	54.25	4	0.5		22	3.5	54.5	5.5	2		
23	11	59	11	0	2	3 35	55	Δ	0.5		23	4	55	55	15		

	Before Weld										
Di	splacem	ent w.r.t t	o Frame	, mm	Dis						
	A	Т	В	Abs Diff							
1	2.5	54.5	4.5	2	1						
2	2.5	54.5	3.5	1	2						
3	1	54	2	1	3						
4	1.5	53.5	2	0.5	4						
5	1	53	2	1	5						
6	0	52.5	1	1	e						
7	0	52.5	0.5	0.5	7						
8	0	52.5	0.5	0.5	8						
9	0	52.5	0	0	ç						
10	0	52.5	0	0	10						
11	0	53	0	0	11						
12	0	53.5	0	0	12						
13	0.5	53.5	0.5	0	13						
14	0	53.5	0	0	14						
15	0.5	54	0	0.5	15						
16	1	54.5	0	1	16						
17	0.5	54.75	0.5	0	17						
18	1.5	55	1.5	0	18						
19	2	56	1	1	19						
20	2.5	57	1.5	1	20						
21	2.5	57	1.5	1	21						
22	3.5	57.25	2.5	1	22						
23	4	57.5	3	1	23						

Table B5: FCAW_Stiff_4 Distortion Data

Tension No Weld										
Disp	lacemen	t w.r.t to	Frame, n	nm						
	Α	Т	В	Abs Dif						
1	3	54.5	2	1						
2	3	54.5	2	1						
3	2	54	1	1						
4	2	53.5	1.5	0.5						
5	1.5	53.25	1	0.5						
6	0.5	53	0	0.5						
7	0.5	53	0	0.5						
8	0.5	53	0	0.5						
9	0	52.75	0	0						
10	0	52.5	0	0						
11	0	53	0	0						
12	0.5	53.5	0.5	0						
13	0.5	53.25	0.5	0						
14	0	53	0	0						
15	0.5	53.5	0	0.5						
16	0.5	54	0	0.5						
17	0.5	54.5	0	0.5						
18	1	55	0	1						
19	1.5	55.5	0.5	1						
20	2	56	0.5	1.5						
21	2	56	0	2						
22	2	56.5	0	2						
23	2	57	0	2						

After Weld									
Di	splaceme	ent w.r.t t	o Frame,	mm					
	Α	Т	В	Abs Diff					
1	0.5	52	0.5	0					
2	0.5	52	0.5	0					
3	0	52.25	0	0					
4	0.5	52.5	0.5	0					
5	0.5	52.5	0.5	0					
6	0	52.5	0	0					
7	0.5	52.75	0.5	0					
8	0.5	53	1	0.5					
9	0.5	53	1.5	1					
10	0	53	1.5	1.5					
11	0.5	53.75	2	1.5					
12	1	54.5	3	2					
13	1	54.5	3	2					
14	0.5	54.5	2	1.5					
15	1	54.75	2	1					
16	1	55	2.5	1.5					
17	1	55	2	1					
18	1	55	2	1					
19	1.5	55.25	1.5	0					
20	1.5	55.5	1.5	0					
21	0.5	55.5	0.5	0					
22	0.5	55.75	1	0.5					
23	1	56	1	0					

Table 6: FCAW_Stiff_2 Net Displacement

N	Net Displacement, mm			m	Net Displacement, mm				m	Net Improvement, mm			
Dis	placeme	<mark>nt w.r.t to</mark>	Frame,	mm		E	<mark>Benchma</mark> i	'k		Bei	nchmark		
	Α	Т	В	Abs Diff		Α	Т	В	Abs Diff				
1	-7	-5	-7.5	0.5	1	-3.5	-2	-0.5	3	-3.5	-3	-7	
2	-6	-4.5	-5.5	0.5	2	-3.5	-2	-0.5	3	-2.5	-2.5	-5	
3	-5	-4.75	-5	0	3	-2.5	-1.75	-0.5	2	-2.5	-3	-4.5	
4	-3.5	-5	-3	0.5	4	-2.5	-1.5	0	2.5	-1	-3.5	-3	
5	-2.5	-4.25	-2.5	0	5	-1.5	-1.25	0	1.5	-1	-3	-2.5	
6	-2.5	-3.5	-2	0.5	6	-0.5	-1	0.5	1	-2	-2.5	-2.5	
7	-1.5	-2.75	-1	0.5	7	0	-0.75	0.5	0.5	-1.5	-2	-1.5	
8	-0.5	-2	-0.5	0	8	0.5	-0.5	1	0.5	-1	-1.5	-1.5	
9	0	-1.5	0	0	9	0.5	-0.25	1	0.5	-0.5	-1.25	-1	
10	0.5	-1	0.5	0	10	1.5	0	1.5	0	-1	-1	-1	
11	0	-1	0.5	0.5	11	1.5	0	1	0.5	-1.5	-1	-0.5	
12	0.5	-1	1	0.5	12	1.5	0	1	0.5	-1	-1	0	
13	0	-0.75	0.5	0.5	13	1.5	0	1	0.5	-1.5	-0.75	-0.5	
14	0.5	-0.5	0	0.5	14	1.5	0	0.5	1	-1	-0.5	-0.5	
15	0.5	-0.75	1	0.5	15	1	-0.25	0.5	0.5	-0.5	-0.5	0.5	
16	0.5	-1	0.5	0	16	0.5	-0.5	0	0.5	0	-0.5	0.5	
17	0	-1.25	0.5	0.5	17	0	-1	0	0	0	-0.25	0.5	
18	-0.5	-1.5	0	0.5	18	0	-1.5	-0.5	0.5	-0.5	0	0.5	
19	-0.5	-1.75	0.5	1	19	-0.5	-2	-1	0.5	0	0.25	1.5	
20	-2	-2	-1	1	20	-2	-2.5	-1.5	0.5	0	0.5	0.5	
21	-5	-2	-3	2	21	-4	-3.5	-3.5	0.5	-1	1.5	0.5	
22	-5.5	-2.25	-4.5	1	22	-3.5	-3.75	-4	0.5	-2	1.5	-0.5	
23	-6.5	-2.5	-5.5	1	23	-3.5	-4	-4	0.5	-3	1.5	-1.5	

Evaluation of Advanced Gas Metal Arc Welding and Distortion Mitigation Techniques for Thin Panel Steel and Aluminum Structures

B-4

N	Net Displacement, mm										
Dis	placeme	nt w.r.t to	Frame, I	mm							
	Α	Т	В	Abs Diff							
1	-9.5	-3.5	-7	2.5							
2	-8	-3	-4.5	3.5							
3	-5.5	-2.75	-3	2.5							
4	-4.5	-2.5	-2	2.5							
5	-4	-2	-1	3							
6	-3	-1.5	-0.5	2.5							
7	-1	-1.25	0	1							
8	-0.5	-1	0	0.5							
9	0	-0.5	0	0							
10	0.5	0	0.5	0							
11	0.5	0.25	1.5	1							
12	0	0.5	1.5	1.5							
13	0	0.5	1.5	1.5							
14	0	0.5	1.5	1.5							
15	-0.5	0.25	1.5	2							
16	-1	0	1	2							
17	-2	-0.5	0.5	2.5							
18	-2.5	-1	-0.5	2							
19	-2.5	-1.75	-1	1.5							
20	-3	-2.5	-2.5	0.5							
21	-5.5	-3	-3.5	2							
22	-6	-3.5	-5	1							
23	-7	-4	-5.5	1.5							

Table B3: FCAW_Stiff_3 Net Improvement

Net Displacement, mm											
	B	Benchmar	'k								
	Α	Т	В	Abs Diff							
1	-3.5	-2	-0.5	3							
2	-3.5	-2	-0.5	3							
3	-2.5	-1.75	-0.5	2							
4	-2.5	-1.5	0	2.5							
5	-1.5	-1.25	0	1.5							
6	-0.5	-1	0.5	1							
7	0	-0.75	0.5	0.5							
8	0.5	-0.5	1	0.5							
9	0.5	-0.25	1	0.5							
10	1.5	0	1.5	0							
11	1.5	0	1	0.5							
12	1.5	0	1	0.5							
13	1.5	0	1	0.5							
14	1.5	0	0.5	1							
15	1	-0.25	0.5	0.5							
16	0.5	-0.5	0	0.5							
17	0	-1	0	0							
18	0	-1.5	-0.5	0.5							
19	-0.5	-2	-1	0.5							
20	-2	-2.5	-1.5	0.5							
21	-4	-3.5	-3.5	0.5							
22	-3.5	-3.75	-4	0.5							
23	-3.5	-4	-4	0.5							

Net Impro	Net Improvement, mm												
Ber	Benchmark												
-6	-1.5	-6.5											
-4.5	-1	-4											
-3	-1	-2.5											
-2	-1	-2											
-2.5	-0.75	-1											
-2.5	-0.5	-1											
-1	-0.5	-0.5											
-1	-0.5	-1											
-0.5	-0.25	-1											
-1	0	-1											
-1	0.25	0.5											
-1.5	0.5	0.5											
-1.5	0.5	0.5											
-1.5	0.5	1											
-1.5	0.5	1											
-1.5	0.5	1											
-2	0.5	0.5											
-2.5	0.5	0											
-2	0.25	0											
-1	0	-1											
-1.5	0.5	0											
-2.5	0.25	-1											
-3.5	0	-1.5											

Table B4: FCAW_Stiff_4 Net Improvement

Net Displacement mm												
Die		nt w r t to	Eramo	mm								
		т		Abc Diff								
- 1	A	25	А									
1	-2	-2.5	-4	2 1								
2	-2	-2.5	-3	1								
3	-1	-1.75	-2	1								
4	-1	-1	-1.5	0.5								
5	-0.5	-0.5	-1.5	1								
6	0	0	-1	1								
7	0.5	0.25	0	0.5								
8	0.5	0.5	0.5	0								
9	0.5	0.5	1.5	1								
10	0	0.5	1.5	1.5								
11	0.5	0.75	2	1.5								
12	1	1	3	2								
13	0.5	1	2.5	2								
14	0.5	1	2	1.5								
15	0.5	0.75	2	1.5								
16	0	0.5	2.5	2.5								
17	0.5	0.25	1.5	1								
18	-0.5	0	0.5	1								
19	-0.5	-0.75	0.5	1								
20	-1	-1.5	0	1								
21	-2	-1.5	-1	1								
22	-3	-1.5	-1.5	1.5								
23	-3	-15	-2	1								

Net Displacement, mm											
	B	enchmar	'k								
	A T B										
1	-3.5	-2	-0.5	3							
2	-3.5	-2	-0.5	3							
3	-2.5	-1.75	-0.5	2							
4	-2.5	-1.5	0	2.5							
5	-1.5	-1.25	0	1.5							
6	-0.5	-1	0.5	1							
7	0	-0.75	0.5	0.5							
8	0.5	-0.5	1	0.5							
9	0.5	-0.25	1	0.5							
10	1.5	0 1.5		0							
11	1.5	0	1	0.5							
12	1.5	0	1	0.5							
13	1.5	0	1	0.5							
14	1.5	0	0.5	1							
15	1	-0.25	0.5	0.5							
16	0.5	-0.5	0	0.5							
17	0	-1	0	0							
18	0	-1.5	-0.5	0.5							
19	-0.5	-2	-1	0.5							
20	-2	-2.5	-1.5	0.5							
21	-4	-3.5	-3.5	0.5							
22	-3.5	-3.75	-4	0.5							
23	-3.5	-4	-4	0.5							

Net Improvement, mm											
Benchmark											
1.5	-0.5	-3.5									
1.5	-0.5	-2.5									
1.5	0	-1.5									
1.5	0.5	-1.5									
1	0.75	-1.5									
0.5	1	-1.5									
0.5	1	-0.5									
0	1	-0.5									
0	0.75	0.5									
-1.5	0.5	0									
-1	0.75	1									
-0.5	1	2									
-1	1	1.5									
-1	1	1.5									
-0.5	1	1.5									
-0.5	1	2.5									
0.5	1.25	1.5									
-0.5	1.5	1									
0	1.25	1.5									
1	1	1.5									
2	2	2.5									
0.5	2.25	2.5									
0.5	2.5	2									

Figure B1: Net Displacement along Longitudinal Section A for STT Stiffener Benchmark Assembly

Figure B2: Net Displacement along Longitudinal Section B for STT Stiffener Benchmark Assembly

Figure B3: Net Displacement along Longitudinal Section A for FCAW Stiffener Benchmark Assembly

Figure B4: Net Displacement along Longitudinal Section B for FCAW Stiffener Benchmark Assembly

Figure B5: Net Displacement along Longitudinal Section A for FCAW Stiffener Assembly 2

Figure B6: Net Displacement along Longitudinal Section B for FCAW Stiffener Assembly 2

Figure B7: Net Displacement along Longitudinal Section A for FCAW Stiffener Assembly 3

Figure B8: Net Displacement along Longitudinal Section B for FCAW Stiffener Benchmark Assembly 3

Figure B9: Net Displacement along Longitudinal Section A for FCAW Stiffener Assembly 4

Figure B10: Net Displacement along Longitudinal Section B for FCAW Stiffener Benchmark Assembly 4

Figure B11: FCAW_Stiff_2 -Net Improvement at Location A.

Figure B12: FCAW_Stiff_2 -Net Improvement at Location B.

Figure B13: FCAW_Stiff_2 -Net Improvement at Location T.

Figure B14: FCAW_Stiff_3 -Net Improvement at Location A.

Figure B15: FCAW_Stiff_3 -Net Improvement at Location B.

Figure B16: FCAW_Stiff_3 -Net Improvement at Location T.

Figure B17: FCAW_Stiff_4 -Net Improvement at Location A.

Figure B18: FCAW_Stiff_4 -Net Improvement at Location B.

Figure B19: FCAW_Stiff_4 -Net Improvement at Location T.

APPENDIX C

STT PROCESS RECOMMENDATIONS

STT USER GUIDELINES

- 1. Always refer to approved welding procedure data sheet when setting up the STT process for critical applications such as the welding of stiffener plates to panels. Welding procedure data sheets shall be approved specifically for the Lincoln STT equipment being used as software and synergic control settings may not be the same for different STT equipment.
- 2. Limit material thickness of any member welded with the STT process to 5mm. The range of material thickness using WPDS's herein shall be limited between 3mm and 5mm.
- 3. Maintain a short contact tip to work (CTTW) distance similar to GMAW short arc. A 10mm (3/8") CTTW distance is suitable. Set contact tip to be only slightly recessed in the gas nozzle to achieve the desired CTTW distance.
- 4. An air cooled gun is adequate for welding with STT because of the low welding current.
- 5. A travel angle between 0 degrees and 15 degrees push is recommended for achieving desired weld bead profile when making fillet welds.

	BN	ЛТ	Flee	et Tech	nolog	ay	WELDING PRO DATA SH	CEDUR	E		WPDS NO.: DATE:	STT-035-0 12/19/200	C02-2F 7	Rev.:		
Compar	ny Name	: E	MT Fle	et Technolo	ду						Ref. Standard	ls:				
Address	s:	3	11 Leg	get Drive K	anata, Ont	ario K2K 1	1Z8		Ref. WPS:							
Welding	Proces	ses:		GMAW-S	TT		Pulsed: Yes	✓ No					Pulsed:	Yes No		
Shieldin	ng Gas T	ype:	1	100% CC	2				2							
Position	ns:	ŀ	lorizont	al (2F)					Joint Configuration & Pass/Layer Sequence							
Process Mode: Manual 🗹 Semi-Auto 🗹 Machine 🗌 Auto 🔲							STREETING.	The state		10	S. CONTE	Contraction of the				
Joint Ty	/pe:		Butt	⊻ Te	e 🗹 (Corner	🗹 Lap	Edge			TI	LAST CAN				
Penetra	ition:		Com	plete	Partial	ETT=		Fillet						25.		
Backing	j :	N	Aaterial:	N/A			Thickness: N/A		and the second				/	s		
Backgo	uging:	H	Yes	Method:	N/A				Desilte				/	-		
-		- 1	No	Depth:	N/A	101			19.20			000	/	Sec. 12 (11.202		
Electro	de Exten	sion: c	iontact t	tip to work d	istance = 3	3/8"			SAL SI SI			/				
Flux CL	Diamete	00: 1	J/A	10					28			1				
Tungete	assilicati	ode 1	Whe:	N/A			Dia ·	N/A								
Cleanin	g Proce	dures V	Viire wh	eel			Dia.		Carton .		ľ	/	4	NIL TREES		
	9								5				3	т.		
CSA W	186 Reb	ar	Dire	ct Splice	Inc	direct Splic	e 🗌 Lap Spli	се			1					
Spilce	rype.	1	Reba	ar to Structu	iral Membe	rOnly										
Identifi	cation o	f Base	Materia	al(for CSA \	V186 indic	ate carbon	equivalent, max. pr	nosphorus	& sulphu	r content)	Dia		Canalal	Desuissesses		
Part				Sp	ecification	& Grade				Thick	ness or Dia.		Special	Requirements		
	HSLA 8	0								3mr 2mr	n to 5mm					
li	HSLA 8	6 Filler	Materi	al						Smr	n to omm					
Pro	cation o	Filler	Watern	Trade N	ame		-	lassificati	0.0		Group		Filler Tres	itment		
GMAW	STT	ESAB	Spoola	rc 95	ame		ER1005-1	lassingati	011		Cioup		1 1101 1102	anon		
Onizari	011	LOND	opoola	10 00			LITTOUG									
-																
Weldin	g Param	neters														
Thick- ness (mm)	Weld Size/ ETT	L	ayer	Pass Number	Welding Process	Dia. (in.)	Wire Feed Speed (IPM)	Current A	Volt V	Current Polarity	Welding Speed (IPM)	Program number	Gas Flow Rate (CFH	Heat Input (kJ/in)		
T	3.0		1	1	STT	.035	210	115	16	DCEP	13	131	30	8.5		
т	4.8		1	1	STT	.035	210	115	16	DCEP	10	131	30	11.0		
			_													
Heat tr	eatment	:							Ac	ceptance		Co	mpany Aut	horization		
Prehea	t min:	Ambie	nt		Interpasst	emp.max.	N/A									
Power Arc Co Run-in	Source: ontrol: 8 : 100ipr	Linco .0, Trir n, burr	oln Pow n: 1.0 nback:	erwave 455 0.03sec, pr	eflow: 0.5	isec	N/A									
5mm p	late is the	e limita	tion of t	his process	Use of S	r TT transfer	r on plate									
above	5mm in t	hicknes	ss may i	result in lac	of fusion	or lack of	penetration.									
Contac	t tip to w	ork dis	tance of	f 3/8" must l	e maintair	ed to achi	eve									
accepta	able weld	d profile	and pe	enetration pr	ofile.		99955					Date:				

Figure C1: Procedure for STT 0.035" diameter wire with C02 Shielding Gas

Ċ	BMT Fleet Technology										WPDS NO.: DATE:	STT-035-0 12/19/200	C25-2F 7	Rev.:		
Compa	ny Name	: E	MT Flee	et Technolo	gy				Ref. Standards:							
Address	S:	3	11 Legg	et Drive K	anata, Ont	ario K2K	1Z8				Ref. WPS:					
Walding	Droppe			CMAW S	TT		Pulcod: Vos	ZNo					Pulsed.	Voc No		
Shieldin	o Gas T	vpe:	1	75 Ar / 25	6 CO2			CINO	2				ruiseu. L			
Position	ns:	ŀ	orizonta	al (2F)						Joint	Configuration	& Pass/La	ayer Seque	nce		
Process	s Mode:		Manu	ial [🖌 Semi-Au	ito 🗸	Machine	Auto	- aspected	10110-0-1		0.1502.28	C / (61)			
Joint Ty	/pe:		Butt	∠ Te	e 🗹 (Corner	🗹 Lap	Edge			TI			Note of St		
Penetra	ation:		Com	plete	Partial	ETT=	2	Fillet					-			
Backing	g:	M	Aaterial:	N/A			Thickness: N/A						/	s		
Backgo	uging:	H	Yes	Method:	N/A								/	-		
Electro	do Evton	sion: c	NO	Deptn:	IN/A	8/8"						,	/			
Nozzle	Diamete	r(s): 1	/2" to 5/	8"	istance - t	010						/				
Flux Cla	assificati	on: N	N/A	-								*		19 19 19		
Tungste	en Electr	ode: 1	ype:	N/A			Dia.:	N/A				1949				
Cleanin	g Proce	dures \	Viire wh	eel						11 21 19		1		•		
									5				5	т,		
CRAW	196 Deb	or	-							11201028	111111	1111		•		
Splice 7	Туре:	ar	Direc	t Splice r to Structu	Ind Ind	direct Splic er Only	e 🔄 Lap Spli	ce	E Think	Dalabas	al more and	12002		S.S. R. Landsong		
Identifi	cation o	f Base	Materia	I(for CSA \	W186 indic	ate carbon	equivalent, max. pl	nosphorus	& sulphu	r content)						
Part			_	Sp	ecification	& Grade				Thickr	ness or Dia.		Specia	Requirements		
1	HSLA 8	0								3mr	n to 5mm	_				
	HSLA 8	0	Mataria													
Dro	cation c	Filler	Materia	Trade N	2000			lassificati	0.0		Group		Filler Tre:	atment		
GMAW	STT	ESAB	Spoolar	c 95	ame		ER1005-1	nassincati	ation Group Filler Treatment					atment		
GIVIAVV	-011	LOAD	opoolar	0.00			LITIOUS-I									
Weldin	g Paran	neters														
Thick- ness (mm)	Weld Size/ ETT	L	ayer	Pass Number	Welding Process	Dia. (in.)	Wire Feed Speed (IPM)	Current A	Volt V	Current Polarity	Welding Speed (IPM)	Program number	Gas Flow Rate (CFH	Heat Input (kJ/in)		
Т	3.0		1	1	STT	.035	210	118	16	DCEP	11	127	30	10.3		
Т	4.8		1	1	STT	.035	210	118	16	DCEP	8	127	30	14.2		
-			_													
									-							
Heat tr	eatment	; 1							Ac	ceptance		Co	mpany Au	thorization		
Prehea	t min:	Ambie	nt		Interpass	emp.max.	N/A									
					Interpass	emp.min.:	N/A	1								
Power	Power Source: Lincoln Powerwave 455							1								
Arc Control: 9.5, Frim: 1.5 Run-in: 100ipm, burnback: 0.03sec. preflow: 0.5sec										5						
Work a	Run-m: Toupm, burnback: 0.058ec, prenow: 0.58ec Work angle: 40 degrees, Travel angle: 0 degrees															
5mm pl	5mm plate is the limitation of this process. Use of STT transfer on plate															
above	ove 5mm in thickness may result in lack of fusion or lack of penetration.															
Contac	t tip to w	ork dist	ance of	3/8" must t	be maintair	ied to achi	eve					0.1				
accepta	able weld	1 profile	and pe	netration pr	onle.						and the second second second	Date:				

Figure C2: Procedure for STT 0.035" diameter wire with C25 Shielding Gas

Company Name: BMT Field Technology Ref. Standards: Address: 311 Legge1 Dreves: Ref. WPS: Meding Processes: 1 MMW-STT Pulsed: Yes No Shedding Cas Type: 1 MMW-STT Pulsed: Yes No Process Mode: 1 MMW-STT Pulsed: Yes No Process Mode: 1 Marula! Servicus Marula! Servicus Joint Configuration & Passultary: Sequence Process Mode: 1 But for the 2 Corner 2 Filet Joint Configuration & Passultary: Sequence Backspuig: 1 But for the 2 Corner 2 Filet Joint Configuration & Passultary: Sequence Backspuig: 1 But for the 2 Corner 2 Filet Secure Secure Secure Backspuig: 1 Boilt NA Thickness: NA Secure Secure Backspuig: Address: NA Distart of the Marula Secure Secure Backspuig: Matural Member Only Distart of the Marula Thickness or Dis. Special Requirements 1 HSLA 80 3rms to Smm Secure Secure Secure Secure 1 HSLA 80 1		BMT Fleet Technology									WPDS NO.: DATE:	STT-045-0 12/19/200	C02-2F 7	Rev.:
Address: 311 Legget Drive Kanala, Ontario K2K 128 Ref. WPS: Welding Processes: 1 GMAW-STT Pulaed: Yes No Needing Cas Type: 1 GMAW-STT Pulaed: Yes No Positions: Hortcortal (2F) Pulaed: Yes No Joint Configuration & Pass/Layer Sequence Possitions: Hortcortal (2F) Postion (2F) NA Intervention (2F) Pulaed: Yes No Deart Type: Datit Configuration & Pass/Layer Sequence Process Mode: No Intervention (2F) Pulaed: Yes No Deart Type: Datit Configuration & Pass/Layer Sequence Process Mode: Intervention (2F)	Compa	ny Name:	BMT Flee	t Technolo	gy						Ref. Standard	ls:		
Nediting Processes: 1 IONACKSTT Pulsed: Yes No 2 Pulsed: Yes No Shading Gas Type: Horizontal (2) Serti-Auto Machine Auto Joint Configuration & Pasul Ayer Sequence Process Rodo: I annual I Serti-Auto Machine Auto Joint Configuration & Pasul Ayer Sequence Process Rodo: I annual I Serti-Auto Machine Auto Joint Configuration & Pasul Ayer Sequence Process Rodo: I annual I Serti-Auto I Machine Joint Configuration & Pasul Ayer Sequence Reckgouging I wateriat NA Thickness NA I wateriat NA Electrode Extension: Concert NA Dia: NA Claning Proceduree Wile wheat Dia: NA Dia: NA Claning Proceduree Wile wheat Dia: NA Special Requirements 1 HSLA 60 Special Requirements Jmm to Simm Special Requirements 1 HSLA 60 Special Requirements Group Filler Treatment Classification Ministraid Pass Yes Dis I Yes Dis <td>Address</td> <td>B:</td> <td>311 Legg</td> <td>et Drive K</td> <td>anata, Ont</td> <td>ario K2K</td> <td>1Z8</td> <td></td> <td></td> <td></td> <td>Ref. WPS:</td> <td></td> <td></td> <td></td>	Address	B :	311 Legg	et Drive K	anata, Ont	ario K2K	1Z8				Ref. WPS:			
Shadang Gas Type: 1 100% CO2 Positions: Porces Mode: Annual Semi-Auto Posses Mode: Annual Semi-Auto Posses Mode: Annual Semi-Auto Annual Semi-	Welding	Processe	s:	GMAW-S	TT		Pulsed: Yes	✓ No	-	[Pulsed:	Yes No
Peations in Annual 25 - Joint Configuration & PasseLayer Sequence Process Mode: Joint Type: Joint Configuration & PasseLayer Sequence Process Mode: Joint Configuration & PasseLayer Sequence Precentation: Joint Configuration & PasseLayer Sequence Joint Specification Joint Configuration & PasseLayer Sequence Joint Specification & Indiversity Joint Specification & Indiversity Joint Specification & Grade Joint S	Shieldir	g Gas Ty	De: 1	100% CC	12			<u></u>	2					
Process Mode: Butt 2) Service Auto Plachine Auto Plachine Auto Place Auto Auto Auto Place Auto Auto Auto Place Auto Auto Auto Place Auto Auto Auto Auto Auto Auto Auto Auto	Position	Positions: Horizontal (2F)									Configuration	& Pass/La	ayer Seque	nce
Joint Type: □ But □ Tree □ Corner □ Lap □ Edge Percitation: Competer Partial ETT = □ Pilet Backing: □ Material N/A Backgouging: □ Yes Method: N/A Backgouging: □ Yes Specificatione = 3/8 Fac Glassification: N/A Cleaning Procedures Wire wheel	Process	Mode:	🗌 Manu	ial [🖌 Semi-Au	ito 🗸	Machine .	Auto	12000		States and	Y Starte	North Co	Contraction of the
Paretration: Complete Prior Process IVA Backgouging: Program Gas Flow Web Classification of Filler Material: WA Trickness: NVA Backgouging: Proceedures Wire wheel Classification Classification of State tip to work distance = 3/8" Nozzle Diameter(s): IVZ: to 5/8" Flow Classification Classifi	Joint Ty	pe:	🗌 Butt	∠ Te	e 🗸 (Corner	🗹 Lap	Edge			TI			
Backarguing:Yes	Penetra	tion:	Comp	olete	Partial	ETT=	F	Fillet					-	
Backgouging: VA No Dopt: NA Electrode Extension: contact lip to work distance = 3/8" Nozzio Diametery: 1/2 to 3/8" Fibr Classification: NA Turgater Electrode: Type: NA Cleaning Procedures Wire wheel Canning Procedures Wire wheel Canning Procedures Wire wheel Canning Procedures Wire wheel Canning Procedures Type: NA Cleaning Procedures Wire wheel Canning Procedures Type: NA Cleaning Procedures Wire wheel Canning Procedures Type: NA Cleaning Procedures Wire wheel Canning Procedures Type: NA Ti HSLA 80 1 HSL	Backing	1:	Material:	N/A			Thickness: N/A						/	s
	Backgo	uging:	Yes	Method:	N/A								/	-
Elected Extension: contact tip to work distance = 3/8" Plac Classification: NA Cleaning Procedures Wire wheel CSA W188 Rebar Dia: NA Cleaning Procedures Wire wheel CSA W188 Rebar Dia: NA Cleaning Procedures Wire wheel CSA W188 Rebar Dia: NA Cleaning Procedures Wire wheel CSA W188 Rebar Dia: NA Cleaning Procedures Wire wheel T, CSA W188 Rebar Dia: NA Cleaning Procedures Wire wheel T, T, CSA W188 Rebar Dia: NA Cleaning Procedures Wire wheel T, T, CSA W188 Rebar Dia: NA Cleaning Procedures Wire wheel T, T, CSA W188 Rebar Dia: NA Cleaning Procedures Wire wheel T, T, CSA W188 Rebar Dia: NA Cleaning Procedures Wire wheel T, T, Special Requirements Special Requirements Special Requirements Special Requirements Trade Name Classification Group Filler Treatment Classification Group Filler Treatment Wading Parameters Welding Parameters Mathewaters Kathewaters Kathewat			L No	Depth:	N/A	108							/	
Vol220 Unamenter(s) I/2 to 30° File: Classification: N/A Ungster Electrode: Type: Inc: Classification: N/A Part Special Requirements T HSLA 80 I HSLA 80 II HSLA 80 Meding Parameters Trade Name Classification Group Filter Treatment A Voit Current Voit (IPM) Process Trade Name Classification Group Filter Treatment Molding Parameters Number Process T 3.0 1 1 STT Odd 1 1 STT 0.45 125 <td< td=""><td>Electro</td><td>le Extensi</td><td>on: contact ti</td><td>p to work d</td><td>istance = 3</td><td>3/8"</td><td></td><td></td><td></td><td></td><td></td><td>/</td><td></td><td></td></td<>	Electro	le Extensi	on: contact ti	p to work d	istance = 3	3/8"						/		
Child Valassidadudi. Type: Image: Electrode: Image: Electro	Nozzie	Diameter	S): 1/2 to 5/	0								1		
Cleaning Procedures Wile wheel Cleaning Procedures Wile wheel CSA W188 Rebar CSA W188 Rebar CSA W188 Rebar CSA W186 Rebar	Tungsta	an Electro	te Type	N/A			Dia :	N/A						1000
CSA W186 Robar Splec Type: Direct Splice Indirect Splice Indi	Cleanin	g Procedu	ires Wiire whe	el			Dia.	19/75			1			Ļ
CSA W186 Rebar CSA W186 Rebar CSA W180 indicate Splice Indirect Splice Lap Splice Rebar to Structural Member Only Identification of Base Material(for CSA W180 indicate carbon equivalent, max, phosphorus & aulphur content) Part Specification & Grade Thickness or Dia. Special Requirements 1 HSLA 80 1 HSLA 80		9								STATES S	The state	Real and	1	T.
CSA Wilds Rebar Splice Type: Direct Splice Indirect Splice Lap Splice Rebar to Structural Member Only Part Splice Type: Thickness or Dia. Special Requirements Specification of Base Material(for CSA Wilds Indicate carbon equivalent, max. phosphorus & sulphur content) Part Specification & Grade Thickness or Dia. Special Requirements I HSLA 80 I									3				3	and the setting to
Splice Type: Rebar to Structural Member Only Identification of Base Material(for CSA W186 indicate carbon equivalent, max. phosphorus & sulphur content) Thickness or Dia. Special Requirements I HSLA 80 3mm to 5mm Immu to 5mm Immu to 5mm Immu to 5mm I HSLA 80 3mm to 5mm Immu to 5mm Immu to 5mm Immu to 5mm I HSLA 80 3mm to 5mm Immu to 5mm Immu to 5mm Immu to 5mm I HSLA 80 3mm to 5mm Immu to 5mm Immu to 5mm Immu to 5mm GMAW-STT ESAB Spoolarc 95 ER100S-1 Immu to 5mm Immu to 5mm Immu to 5mm Valiant Parameters Trade Name Classification Group Filler Treatment Welding Parameters Number Process (in.) (IPM) A Volt Current Volt Polarity Special (Requirements) Heat Input (KJ/In) nmb ETT Number Process (in.) (IPM) A Volt Current Volt Polarity Special (Requirements) Heat Input (KJ/In) N/Input King (KJ/In) N/Input King (KJ/In) Immu King (KJ/In)	CSA W	186 Rebai	Direc	t Splice		tirect Splic	e Lap Spli	re	Builde					1
Identification of Base Material(for CSA W180 indicate carbon equivalent, max, phosphorus & sulphur content) Specification & Grade Specification & Graup Specification & Graup Specification & Graup Filler Treatment II HSLA 80 3mm to 5mm Image: Specification Group Filler Treatment Odding Parameters Filler Material ER100S-1 Image: Specification Group Filler Treatment Welding Parameters Pass Welding Process (in.) Wire Feed Speed Current Welding Program Gas Flow Heat Input (mm) ETT Layer Number Process (in.) (in.) Y Volt Current Welding Program Gas Flow Heat Input (mm) ETT Layer Number Process (in.) Y Volt Dia <td< td=""><td>Splice 7</td><td>Type:</td><td>Reba</td><td>r to Structu</td><td>iral Membe</td><td>r Only</td><td>- <u> </u></td><td></td><td>Period State</td><td></td><td></td><td></td><td></td><td>LUCK CONTRACTOR</td></td<>	Splice 7	Type:	Reba	r to Structu	iral Membe	r Only	- <u> </u>		Period State					LUCK CONTRACTOR
Part Specification & Grade Thickness or Dia. Special Requirements 1 HSLA 80 3mm to 5mm 3mm to 5mm Identification of Filler Material 3mm to 5mm 3mm to 5mm Process Trade Name Classification Group Filler Treatment GMAW-STT ESAB Spoolarc 95 ER100S-1 Immover State Stat	Identifi	cation of	Base Materia	I(for CSA \	V186 indic	ate carbon	equivalent, max. ph	osphorus	& sulphu	r content)				
1 HSLA 80 3mm to 5mm 11 HSLA 80 3mm to 5mm Identification of Filler Material 3mm to 5mm Process Trade Name Classification GMAW-STT ESAB Spoolarc 95 ER100S-1 Welding Parameters Thick- Weld Layer Number Process (in.) Ymmodel Layer Number Process (in.) T 4.8 1 1 STT .045 125 135 16 DCEP 14 117 30 11.8 T 4.8 1 1 STT .045 125 135 16 DCEP 14 117 30 11.8 C A	Part			Sp	ecification	& Grade				Thickr	ness or Dia.		Specia	Requirements
II HSLA 80 3mm to 5mm Identification of Filler Material Trade Name Classification Group Filler Treatment GMAW-STT ESAB Spoolarc 95 ER100S-1	1	HSLA 80								3mr	n to 5mm			
Identification of Filler Material Process Trade Name Classification Group Filler Treatment GMAW-STT ESAB Spoolarc 95 ER100S-1	Ш	HSLA 80								3mr	n to 5mm			
Process Trade Name Classification Group Filler Treatment GMAW-STT ESAB Spoolarc 95 ER100S-1 Image: Size of State	Identifi	cation of	Filler Materia	1										
GMAW-STT ESAB Spoolarc 95 ER100S-1 Welding Parameters	Pro	cess		Trade N	ame		C	lassificatio	tion Group Filler Treatment					atment
Welding Parameters Pass Welding Process Dia. (in.) Wire Feed Speed (iPM) Current Volt Volt Current Volt Program (IPM) Gas Flow (CFH) Heat Input (kJ/in)	GMAW	STT E	SAB Spoolar	c 95			ER100S-1							
Welding Parameters Welding Number Dia. Wire Feed Speed Current Volt Current Welding Number Process (i. i. i) (i. i. i) (i. i)					a		· · · · · · · · · · · · · · · · · · ·							
Welding Parameters Thick, Weld (mm) Layer Number Dia. (in.) Wire Feed Speed (in.) Current (IPM) Volt Polarity Current Polarity Welding Speed (IPM) Program Pass (IPM) Rate (CFH) Heat Input (kJ/in) T 3.0 1 1 STT .045 125 135 16 DCEP 14 117 30 9.3 T 4.8 1 1 STT .045 125 135 16 DCEP 14 117 30 9.3 T 4.8 1 1 STT .045 125 135 16 DCEP 11 117 30 11.8 C -												_		
Thick. Weld issue Pass Value Pass Value Dia. (in.) Wire Feed Speed (IPM V Current V Velding Polarity Program (Sas Flow Rate (V, M)n) Heat Input (V, M)n) T 3.0 1 1 STT .045 125 135 16 DCEP 14 117 30 9.3 T 4.8 1 1 STT .045 125 135 16 DCEP 14 117 30 9.3 T 4.8 1 1 STT .045 125 135 16 DCEP 11 117 30 11.8 C<	Weldin	g Parame	ters											
T 3.0 1 1 STT .045 125 135 16 DCEP 14 117 30 9.3 T 4.8 1 1 STT .045 125 135 16 DCEP 11 117 30 9.3 T 4.8 1 1 STT .045 125 135 16 DCEP 11 117 30 11.8 Image: Strain Stra	Thick- ness (mm)	Weld Size/ ETT	Layer	Pass Number	Welding Process	Dia. (in.)	Wire Feed Speed (IPM)	Current A	Volt V	Current Polarity	Welding Speed (IPM)	Program number	Gas Flow Rate (CFH	Heat Input (kJ/in)
T 4.8 1 1 STT .045 125 135 16 DCEP 11 117 30 11.8 Image: Interpaster in the state of 3/8" must be maintained to achieve accentable weld profile and genetration profile. Image:	Т	3.0	1	1	STT	.045	125	135	16	DCEP	14	117	30	9.3
Image: Source: Lincolor	Т	4.8	1	1	STT	.045	125	135	16	DCEP	11	117	30	11.8
Image: Source: Lincepasstemp.max.: N/A Preheat min: Ambient Interpasstemp.max.: N/A Interpasstemp.max.: N/A Interpasstemp.max.: N/A Preheat min: Ambient Interpasstemp.max.: N/A Run-in: 60ipm, burnback: 0.03sec, preflow: 0.5sec Work angle: 40 degrees, Travel angle: 0 degrees 5mm plate is the limitation of this process. Use of STT transfer on plate above 5mm in thickness may result in lack of fusion or lack of penetration. Contact tip to work distance of 3/8" must be maintained to achieve accentable weld profile and genetration profile. Date: Interpasstemp.max														
Image: Source: Lincoln Powerwave 455 Arc Control: 7.5, Trim: 1.4 Run-in: 60ipm, burnback: 0.03sec, preflow: 0.5sec Work angle: 40 degrees, Travel angle: 0 degrees 5mm plate is the limitation of this process. Use of STT transfer on plate above 5mm in thickness may result in lack of fusion or lack of penetration. Contact tip to work distance of 3/8" must be maintained to achieve accentable weld profile and genetration profile.						1								
Heat treatment : Acceptance Company Authorization Heat treatment : Interpasstemp.max.: N/A Interpasstemp.min.: IN/A Preheat min: Ambient Interpasstemp.min.: IN/A Power Source: Lincoln Powerwave 455 Company Authorization Arcc Control: 7.5, Trim: 1.4 Run-in: 60ipm, burnback: 0.03sec, preflow: 0.5sec Work angle: 40 degrees, Travel angle: 0 degrees Smm plate is the limitation of this process. Use of STT transfer on plate above 5mm in thickness may result in lack of fusion or lack of penetration. Contact tip to work distance of 3/8" must be maintained to achieve accentable weld profile and genetration profile.														
Heat treatment : Acceptance Company Authorization Preheat min: Ambient Interpasstemp.max.: N/A Interpasstemp.min.:: N/A Power Source: Lincoln Powerwave 455 Arc Control: 7.5, Trim: 1.4 Acceptance Run-in:: 60ipm, burnback: 0.03sec, preflow: 0.5sec Work angle: 40 degrees, Travel angle: 0 degrees 0 degrees 5mm plate is the limitation of this process. Use of STT transfer on plate above 5mm in thickness may result in lack of fusion or lack of penetration. Contact tip to work distance of 3/8" must be maintained to achieve accentable weld profile and genetration profile.														
Heat treatment : Acceptance Company Authorization Preheat min: Ambient Interpasstemp.max.: N/A Interpasstemp.min.: N/A Power Source: Lincoln Powerwave 455 Arc Control: 7.5, Trim: 1.4 Run-in:: 60ipm, burnback: 0.03sec, preflow: 0.5sec Work angle: 40 degrees, Travel angle: 0 degrees 5 Somm plate is the limitation of this process. Use of STT transfer on plate above 5mm in thickness may result in lack of fusion or lack of penetration. Contact tip to work distance of 3/8" must be maintained to achieve accentable weld profile and genetration profile. Date:														
Heat treatment : Acceptance Company Authorization Preheat min: Ambient Interpasstemp.max.: N/A Interpasstemp.min.: N/A Power Source: Lincoln Powerwave 455 Interpasstemp.min.: N/A Interpasstemp.min.: N/A Power Source: Lincoln Powerwave 455 Krc Control: 7.5, Trim: 1.4 Knu-hin: 60ipm, burnback: 0.03sec, preflow: 0.5sec Kork angle: 40 degrees, Travel angle: 0 degrees Smm plate is the limitation of this process. Use of STT transfer on plate Endet for the maintained to achieve above 5mm in thickness may result in lack of fusion or lack of penetration. Contact tip to work distance of 3/8" must be maintained to achieve Endet for the maintained to achieve					· · · · · · · · · · · · · · · · · · ·									
Preheat min: Ambient Interpasstemp.max.: N/A Interpasstemp.min.:: N/A Power Source: Lincoln Powerwave 455 Arc Control: 7.5, Trim: Run-in: 60ipm, burnback: 0.03sec, preflow: 0.5sec Work angle: 40 degrees, Travel angle: 5mm plate is the limitation of this process. Use of STT transfer on plate above 5mm in thickness may result in lack of fusion or lack of penetration. Contact tip to work distance of 3/8" must be maintained to achieve accentable weld profile and penetration profile. Date: Interpasstemp.max.: N/A	Heat tr	eatment :							Ac	ceptance		Co	mpany Au	thorization
Interpasstemp.min.: N/A Power Source: Lincoln Powerwave 455 Arc Control: 7.5, Trim: Run-in: 60ipm, burnback: 0.03sec, preflow: 0.5sec Work angle: 40 degrees, Travel angle: 5mm plate is the limitation of this process. Use of STT transfer on plate above 5mm in thickness may result in lack of fusion or lack of penetration. Contact tip to work distance of 3/8" must be maintained to achieve accentable weld profile and penetration profile. Date: Image: I	Prehea	t min: A	mbient		Interpasst	emp.max.	N/A							
Power Source: Lincoln Powerwave 455 Arc Control: 7.5, Trim: 1.4 Run-in: 60ipm, burnback: 0.03sec, preflow: 0.5sec Work angle: 40 degrees, Travel angle: 0 degrees 5mm plate is the limitation of this process. Use of STT transfer on plate above 5mm in thickness may result in lack of fusion or lack of penetration. Contact tip to work distance of 3/8" must be maintained to achieve accentable weld profile and penetration profile.		_			Interpasst	emp.min.:	N/A							
Arc Control: 7.5, Irim: 1.4 Run-in: 60ipm, burnback: 0.03sec, preflow: 0.5sec Work angle: 40 degrees, Travel angle: 0 degrees 5mm plate is the limitation of this process. Use of STT transfer on plate above 5mm in thickness may result in lack of fusion or lack of penetration. Contact tip to work distance of 3/8" must be maintained to achieve accentable weld profile and penetration profile.	Power	Source:	Lincoln Powe	erwave 455	5									
Kun-in: 60ipm, burnback: 0.03sec, preflow: 0.5sec Work angle: 40 degrees, Travel angle: 0 degrees 5mm plate is the limitation of this process. Use of STT transfer on plate above 5mm in thickness may result in lack of fusion or lack of penetration. Contact tip to work distance of 3/8" must be maintained to achieve accentable weld profile and penetration profile.	Arc Control: 7.5, Trim: 1.4													
5mm plate is the limitation of this process. Use of STT transfer on plate above 5mm in thickness may result in lack of fusion or lack of penetration. Contact tip to work distance of 3/8" must be maintained to achieve acceptable weld profile and penetration profile.	Run-in: 60ipm, burnback: 0.03sec, preflow: 0.5sec Work angle: 40 degrees, Travel angle: 0 degrees													
above 5mm in thickness may result in lack of fusion or lack of penetration. Contact tip to work distance of 3/8" must be maintained to achieve acceptable weld profile and penetration profile. Determined	5mm pl	ate is the	limitation of th	is process.	Use of S	TT transfe	r on plate							
Contact tip to work distance of 3/8" must be maintained to achieve	above	bove 5mm in thickness may result in lack of fusion or lack of penetration.												
acceptable weld profile and penetration profile.	Contac	t tip to wor	k distance of	3/8" must t	e maintair	ned to achi	eve							
L/alc.	accepta	ble weld	profile and per	netration pr	ofile.		554.015					Date:		

Figure C3: Procedure for STT 0.045" diameter wire with C02 Shielding Gas

	BMT Fleet Technology										WPDS NO.: DATE:	STT-045-0 12/19/200	725-2F	Rev.:		
Compa	ny Name	e:	BMT FI	eet Technolo	gy						Ref. Standard	ls:				
Addres	s:		311 Leg	get Drive K	anata, Ont	ario K2K	1Z8		Ref. WPS:							
Welding	Proces	ses:		GMAW-S	TT		Pulsed: Yes	V No		-			Pulsed:	Yes No		
Shieldir	ng Gas T	ype:	1	75Ar / 25	CO2				2				L dioca.			
Position	IS:	71	Horizon	tal (2F)					Joint Configuration & Pass/Layer Sequence							
Proces	s Mode:		Mai	nual	✓ Semi-Au	uto 🗸	Machine .	Auto	Test course			Constanting	and the second	STATE OF THE OWNER		
Joint Ty	/pe:		But	t ⊻Te	e 🗹 (Corner	🗹 Lap	Edge			T					
Penetra	ation:		Cor	nplete [Partial	ETT=	V	Fillet		15000	-					
Backing	g:		Materia	I: N/A			Thickness: N/A						/	s		
Backgo	uging:		Yes Method: N/A										/			
			└ No	Depth:	N/A				3.91				/			
Electro	de Exter	sion:	contact	tip to work o	listance = 3	3/8"			21 2			/				
Nozzle	Diamete	r(s):	1/2" to :	5/8"					1411			/				
Flux Cl	assificati	on:	N/A						BILL					1		
Tungst	en Electr	ode:	Type:	N/A			Dia.:	N/A			1	1				
Cleanin	ig Proce	aures	white w	neer						11005.120			1-			
									3				3	T.		
CRAM	100 Dak									11				•		
Splice	Type:	ar		ect Splice		direct Splic	e 🔄 Lap Spli	ce						ALS ALL SUL		
Identifi	and an a	(Dee	Mater	al to Struct	A/496 india	ate earlier	aquiuslant may at	aanharua	9 aulahu	r content)			_			
Dort	Cation c	Dase	e water	rai(ior CSA i	ocification	& Grade	requivalent, max. pr	losphorus	a supru	Thick	acc or Dia		Special	Paquiramonta		
Part		0	_	5	ecilication	a Grade				2000	n lo 5mm		Special	Requirements		
-	HSLA 0	0							3mm to 5mm							
Identifi	Instian a	of Fillo	r Mator	ial						5111						
Bro	canon	I	mater	Trade M	2000			laccificati	00		Group		Filler Tree	Imont		
GMAW	STT	ESAR	Snool	Trade IN	ante		EP1005-1	lassilicau	UII		Group		The Trea	unent		
GIVIAW	-311	ESAE	Shools	110 90			ER1003-1									
Weldin	a Paran	neters														
Thick-	Weld			Pass	Welding	Dia.	Wire Feed Speed	Current	Volt	Current	Welding	Program	Gas Flow	Heat Input		
ness (mm)	Size/ ETT	1	Layer	Number	Process	(in.)	(IPM)	A	V	Polarity	Speed (IPM)	number	Rate (CFH	(kJ/in)		
Т	3.0		1	1	STT	.045	125	135	16	DCEP	14	118	30	9.3		
Т	4.8		1	1	STT	.045	150	150	16	DCEP	14	118	30	10.3		
									4							
Heat tr	eatment	:							Ac	ceptance		Co	mpany Au	thorization		
Prehea	t min:	Ambi	ent		Interpasst	lemp.max.	N/A									
_					Interpasst	temp.min.:	N/A									
Power	Source	Linc	oln Pov	verwave 45	5											
Arc Co	Arc Control: 7.5, Trim: 1.4															
Run-in	Run-in: 60ipm, burnback: 0.03sec, preflow: 0.5sec															
Work a	Nork angle: 40 degrees, Travel angle: 0 degrees															
5mm p	5mm plate is the limitation of this process. Use of STT transfer on plate															
above	5mm in t	hickne	ss may	result in lac	k of fusion	or lack of p	penetration.									
Contac	t tip to w	ork dis	stance o	of 3/8" must l	pe maintair	ned to achi	eve									
accept	able weld	d profil	e and p	enetration pr	ofile.							Date:				

Figure C4: Procedure for STT 0.045" diameter wire with C25 Shielding Gas

APPENDIX D

WELDING PROCEDURE DATA SHEETS
5			_			WELDING PRO	CEDUR	E		WPDS NO .:	CV-Argon	-2F	
	BN	AT Fle	et Tech	nnolog	ЗУ	DATA SH	EET			DATE:	02/04/200	8	Rev.:
Compa	ny Name	: BMT F	eet Technol	ogy						Ref. Standard	ls:		
Address	s:	311 Le	gget Drive	Kanata, Ont	ario K2K	1Z8				Ref. WPS:			
Welding	Proces	ses: 1	GMAW			Pulsed: Yes	✓ No	2				Pulsed:	Yes No
Shieldin	g Gas T	ype:	100% Ar	gon				2					
osition	IS:	Horizo	ntal (2F)						Join	t Configuration	& Pass/L	ayer Seque	ince
roces	Mode:	L Ma	nual	Semi-Au	ito 🗸	Machine	Auto	1528	NESCHIER.		ana me	15 7 500	SILCESS BRIDE
Joint Ty	pe:	Bu	tt 🗹 T	ee 🗸 (Corner	🗹 Lap	Edge			T			
enetra	tion:	Co	mplete	Partial	ETT=	1	Fillet		100	-> " -			
Backing	:	Materi	al: N/A			Thickness: N/A				[m]		1	s /
Backgo	uging:	Ye	Method:	N/A		9-1						/	
		No	Depth:	N/A								/	
lectro	de Exten	sion: contac	tip to work	distance = 3	3/4"						/	/	
lozzle	Diamete	r(s): Tande	n Torch Nox	xle							/		
lux Cla	Classification: N/A										*		
lungste	en Electr	ode: Type:	N/A			Dia.:	N/A						S AN LONG
Cleanin	g Proces	dures Stainle	ss wire whe	el, stainless	sanding d	lisk, stainless wire b	rush as			1	/		+
		require	d						15 1198		1		T
								3				3	
CSA W	186 Reh	ar 🗍 🕬	oct Colice		liroct Colle						-	-	1
Splice 7	vpe:		ect Splice		arect splic	e 🔄 Lap Spir	ce						1
-			Jal to Struct	ural Membe	1 Only			0 - 1-1-				_	
dentin	cation o	T base mate	Tal(IOF CSA	vv 166 Indic	ate carbon	i equivalent, max. pr	nosphorus	& suipnu	r content)				
Part			S	pecification	& Grade				Thick	ness or Dia.		Specia	Requirements
1	5086 H1	116		_				_		5mm			
11	5086 H1	116								5mm	_		
dentifi	cation o	f Filler Mate	rial	_									
Pro	cess		Trade N	lame		C	Classificatio	n		Group		Filler Trea	atment
GMAW		OK Autrod 5	356			ER5356							
Veldin	g Param	neters											
Weldin Thick-	g Param Weld	neters	Pass	Welding	Dia.	Wire Feed Speed	Current	Volt	Current	Welding	Data Set	Gas Flow	Heat Input
Weldin Thick- ness (mm)	g Param Weld Size/ ETT	neters Layer	Pass Number	Welding Process	Dia. (mm)	Wire Feed Speed (IPM)	Current A	Volt V	Current Polarity	Welding Speed (IPM)	Data Set	Gas Flow Rate (CFH	Heat Input (kJ/in)
Weldin Thick- ness (mm) T	g Param Weld Size/ ETT 5	Layer	Pass Number	Welding Process GMAW	Dia. (mm) 1.2	Wire Feed Speed (IPM) 600	Current A 259	Volt V 19.8	Current Polarity DCEP	Welding Speed (IPM) 50	Data Set	Gas Flow Rate (CFH 45	Heat Input (kJ/in) 6.2
Weldin Thick- ness (mm) T	g Param Weld Size/ ETT 5	Layer	Pass Number 1	Welding Process GMAW	Dia. (mm) 1.2	Wire Feed Speed (IPM) 600	Current A 259	Volt V 19.8	Current Polarity DCEP	Welding Speed (IPM) 50	Data Set	Gas Flow Rate (CFH 45	Heat Input (kJ/in) 6.2
Weldin Thick- ness (mm) T	g Param Weld Size/ ETT 5	Layer	Pass Number 1	Welding Process GMAW	Dia. (mm) 1.2	Wire Feed Speed (IPM) 600	Current A 259	Volt V 19.8	Current Polarity DCEP	Welding Speed (IPM) 50	Data Set	Gas Flow Rate (CFH 45	Heat Input (kJ/in) 6.2
Neldin Thick- ness (mm) T	g Param Weld Size/ ETT 5	Layer	Pass Number 1	Welding Process GMAW	Dia. (mm) 1.2	Wire Feed Speed (IPM) 600	Current A 259	Volt V 19.8	Current Polarity DCEP	Welding Speed (IPM) 50	Data Set	Gas Flow Rate (CFH 45	Heat Input (kJ/in) 6.2
Veldin Thick- ness (mm)) T	g Param Weld Size/ ETT 5	Layer	Pass Number	Welding Process GMAW	Dia. (mm) 1.2	Wire Feed Speed (IPM) 600	Current A 259	Volt V 19.8	Current Polarity DCEP	Welding Speed (IPM) 50	Data Set	Gas Flow Rate (CFH 45	Heat Input (kJ/in) 6.2
Veldin Thick- ness (mm) T	g Param Weld Size/ ETT 5	Layer	Pass Number	Welding Process GMAW	Dia. (mm) 1.2	Wire Feed Speed (IPM) 600	Current A 259	Volt V 19.8	Current Polarity DCEP	Welding Speed (IPM) 50	Data Set	Gas Flow Rate (CFH 45	Heat Input (kJ/in) 6.2
Weldin Thick- ness (mm) T	g Param Weld Size/ ETT 5	Layer	Pass Number 1	Welding Process GMAW	Dia. (mm) 1.2	Wire Feed Speed (IPM) 600	Current A 259	Volt V 19.8	Current Polarity DCEP	Welding Speed (IPM) 50	Data Set	Gas Flow Rate (CFH 45	Heat Input (kJ/in) 6.2
Weldin Thick- ness (mm) T	g Param Weld Size/ ETT 5	Layer	Pass Number 1	Welding Process GMAW	Dia. (mm) 1.2	Wire Feed Speed (IPM) 600	Current A 259	Volt V 19.8	Current Polarity DCEP	Welding Speed (IPM) 50	Data Set	Gas Flow Rate (CFH 45	Heat Input (kJ/in) 6.2
Weldin Thick- ness (mm) T	g Param Weld Size/ ETT 5	Layer 1	Pass Number 1	Welding Process GMAW	Dia. (mm) 1.2	Wire Feed Speed (IPM) 600	Current A 259	Volt V 19.8	Current Polarity DCEP	Welding Speed (IPM) 50	Data Set	Gas Flow Rate (CFH 45	Heat Input (kJ/in) 6.2
Weldin Thick- ness (mm) T	g Param Weld Size/ ETT 5	Layer 1	Pass Number 1	Welding Process GMAW	Dia. (mm) 1.2	Wire Feed Speed (IPM) 600	Current A 259	Volt V 19.8	Current Polarity DCEP	Welding Speed (IPM) 50	Data Set	Gas Flow Rate (CFH 45	Heat Input (kJ/in) 6.2
Weldin Thick- ness (mm)) T	g Param Weld Size/ ETT 5	Layer 1 	Pass Number	Welding Process GMAW	Dia. (mm) 1.2 emp.max.	Wire Feed Speed (IPM) 600	Current A 259	Volt V 19.8	Current Polarity DCEP	Welding Speed (IPM) 50	Data Set	Gas Flow Rate (CFH 45	Heat Input (kJ/in) 6.2 horization
Weldin Thick- ness (mm) T T	g Param Weld Size/ ETT 5	Layer 1	Pass Number	Welding Process GMAW	Dia. (mm) 1.2 emp.max.	Wire Feed Speed (IPM) 600	Current A 259	Volt V 19.8	Current Polarity DCEP	Welding Speed (IPM) 50	Data Set	Gas Flow Rate (CFH 45	Heat Input (kJ/in) 6.2 thorization
Weldin Thick- ness (mm) T T Heat tro Preheat	g Param Weld Size/ ETT 5	Layer 1 1 Ambient ESAB Arise	Pass Number	Welding Process GMAW	Dia. (mm) 1.2 emp.max. emp.max.	Wire Feed Speed (IPM) 600	Current A 259	Volt V 19.8	Current Polarity DCEP	Welding Speed (IPM) 50	Data Set	Gas Flow Rate (CFH 45 mpany Au	Heat Input (kJ/in) 6.2 thorization
Weldin Thick- ness (mm) T Heat tro Preheat	g Param Weld Size/ ETT 5 	Layer 1 1 Ambient ESAB Aris ch/Mek	Pass Number	Welding Process GMAW	Dia. (mm) 1.2 emp.max. emp.min.:	Wire Feed Speed (IPM) 600 N/A N/A	Current A 259	Volt V 19.8	Current Polarity DCEP	Welding Speed (IPM) 50	Data Set	Gas Flow Rate (CFH 45	Heat Input (kJ/in) 6.2 thorization
Weldin Thick- ness (mm)) T Heat trd Preheat	g Param Weld Size/ ETT 5 5 eatment t min: Source: Nource: Init: Me	Layer 1 1 Ambient ESAB Aris ch/Mek B U8	Pass Number	Welding Process GMAW	Dia. (mm) 1.2 emp.max. emp.min.:	Wire Feed Speed (IPM) 600	Current A 259	Volt V 19.8	Current Polarity DCEP	Welding Speed (IPM) 50	Data Set	Gas Flow Rate (CFH 45 	Heat Input (kJ/in) 6.2 thorization
Weldin Thick- ness (mm) T Heat tr Preheat Power Power Drive U Pendar	g Param Weld Size/ ETT 5	Layer 1 1 ESAB Aris ch/Mek B U8 C, Travel Ar	Pass Number	Welding Process GMAW	Dia. (mm) 1.2 emp.max. emp.max.	Wire Feed Speed (IPM) 600 N/A	Current A 259	Volt V 19.8	Current Polarity DCEP	Welding Speed (IPM) 50	Data Set	Gas Flow Rate (CFH 45 mpany Au	Heat Input (kJ/in) 6.2 thorization
Weldin Thick- ness (mm)) T Heat tr Preheat Preheat Power 0 Drive U Pendar Vork A Program	g Param Weld Size/ ETT 5 	Layer 1 1 : Ambient ESAB Aris ch/Mek B U8 Ø, Travel Ar	Pass Number	Melding Process GMAW	Dia. (mm) 1.2 emp.max. emp.max.	Wire Feed Speed (IPM) 600	Current A 259	Volt V 19.8	Current Polarity DCEP	Welding Speed (IPM) 50	Data Set	Gas Flow Rate (CFH 45 	Heat Input (kJ/in) 6.2 thorization
Weldin Thick- ness (mm) T Heat tr Preheat Preheat Program	g Param Weld Size/ ETT 5 	Layer 1 1 Ambient ESAB Aris ch/Mek B U8 Ø, Travel Ar Mig/Mag, Di	Pass Number	Welding Process GMAW	Dia. (mm) 1.2 emp.max. emp.max.	Wire Feed Speed (IPM) 600	Current A 259	Volt V 19.8	Current Polarity DCEP	Welding Speed (IPM) 50	Data Set	Gas Flow Rate (CFH 45 	Heat Input (kJ/in) 6.2
Weldin Thick- ness (mm)) T Heat tr Preheat Preheat Preheat Preheat Preheat Preheat Preheat Preheat	g Param Weld Size/ ETT 5 	Layer 1 Ambient ESAB Aris ch/Mek B U8 Ø, Travel Ar Mig/Mag, Di	Pass Number	Welding Process GMAW	Dia. (mm) 1.2 emp.max. emp.min.:	Wire Feed Speed (IPM) 600	Current A 259	Volt V 19.8	Current Polarity DCEP	Welding Speed (IPM) 50	Data Set	Gas Flow Rate (CFH 45	Heat Input (kJ/in) 6.2
Weldin Thick- ness (mm)) T Heat tra- Preheat Power Porte U Pendar Nork A	g Param Weld Size/ ETT 5 	Layer 1 Ambient ESAB Aris ch/Mek B U8 Ø, Travel Ar Mig/Mag, Di	Pass Number	Welding Process GMAW	Dia. (mm) 1.2 emp.max. emp.min.:	Wire Feed Speed (IPM) 600	Current A 259	Volt V 19.8	Current Polarity DCEP	Welding Speed (IPM) 50	Data Set	Gas Flow Rate (CFH 45 mpany Au	Heat Input (kJ/in) 6.2 thorization

Figure C1: Procedure for Conventional CV Process

	BN	AT Flee	et Tec	hnolog	ЗУ	WELDING PRO DATA SHI	CEDUR EET	E		WPDS NO.: DATE:	Pulse-Argo 02/04/2008	on-2F 8	Rev.:
Compa	ny Name	BMT Flee	t Technole	ogy						Ref. Standard	s:		
ddres	s:	311 Legg	et Drive H	Kanata, Ontar	o K2K 1Z	8				Ref. WPS:			
Velding	Proces	ses:	GMAW			Pulsed: Ves	No					Pulsed:	Yes No
Shieldir	ng Gas T	ype: 1	100% Ar	gon				2					
Position	ns:	Horizonta	l (2F)						Joint	Configuration	& Pass/La	ayer Seque	nce
roces	s Mode:	Manu	al	Semi-Auto	1	Machine	Auto						
Cont Ty	/pe:	Butt		Partial	ETT=				11	-> T	-		
Backing		Material:	N/A		L11-	Thickness: N/A	mee			-~		Г	s /
Backgo	ouging:	Yes	Method:	N/A								/	V
		No	Depth:	N/A								/	
lectro	ode Extension: contact tip to work distance = 3/4"										/		
lozzle	zle Diameter(s): Tandem Torch Noxxle						-				1		
Tungete	x Classification: N/A						N/A						1
Cleanin	ng Proced	lures Stainless	wire whee	el, stainless s	anding disk	k, stainless wire brus	shas	Tes de la		1	/		
		required						5	1 2 2 2 2 2 2 2 2 2			3	T,
								1	-				-
SA W	186 Reb	ar Direct	Splice	Indire	ect Splice	Lap Spli	ce						1-35
spilce	rype.	Rebar	to Struct	ural Member	Uniy	evicelent men abo	mbanua 8	aulahur a	antanti				
Part	cation o	f Base Materia	I(TOP CSA	Specification	e carbon e	quivalent, max. pro:	sphorus &	sulphur c	Thickr	less or Dia		Special	Requirements
I	5086 H1	16		opeemeatori	A Olduc		_		THOR	5mm	-	opoola	rioquiroinonio
	5086 H1	16								5mm			
dentifi	ication o	f Filler Materia	I										
Pro	cess		Trade	Name		0	lassificatio	fication Group Filler Treatment					atment
GMAW	-P	OK Autrod 535	6		_	ER5356							
Moldin	a Daram	atore		_							-		
Thick- ness	Weld Size/	Layer	Pass Number	Welding Process	Dia. (mm)	Wire Feed Speed (IPM)	Current A	Volt V	Current Polarity	Welding Speed (IPM	Data Set	Gas Flow Rate	Heat Input (kJ/in)
(mm)	5	1	1	GMAW-P	12	610	250	22.0	DCEP	46	6	45	7.2
-			<u> </u>	OMATTY	1.4	010	200	LLIU	DOLI	10	-	10	
_								1					
-													
									1				
leat tr	reatment	Ambient		Internasster	n max :	N/A		Ac	ceptance		Co	mpany Au	tnorization
renea	at min.	Ambient		Interpassion	p.max	N/A							
Power	Source	ESAB Aristor	nia 450	merpassien	p.11111.								
Drive L	Unit: Me	ch/Mek											
Penda	nt: ESA	B U8											
Work A	Angle: 4	0°, Travel Angle	e: 0°	Ar 1 2mm									
rogra	un into:	mg/mag, Puls	e, Ai/Mg,	Ar, 1.2mm									

Figure C2: Procedure for Standard Pulse

E.	BI	/T Fle	et Teo	chnolog	ЭУ	WELDING PRO DATA SH	CEDUR EET	E		WPDS NO.: DATE:	Pulse/Puls 02/04/200	se-Argon-2F	Rev.:		
Compa	ny Name	: BMT Fle	et Techno	logy						Ref. Standard	ls:			-	
Addres	s:	311 Leg	get Drive	Kanata, Ontar	io K2K 1Z	8				Ref. WPS:		e-Argon-2F 8 Rev.: Pulsed: Yes ayer Sequence Special Requirem Filler Treatment Gas Flow Heat In Rate (CFH 45 9.1		_	
			louw			Data da La Mara						D. La		_	
Velding	g Proces	ses: 1	GMAW			Pulsed: Yes	<u> </u>	2				Pulsed:	Yes	No	
shieldir	ng Gas I	ype:	100% A	rgon									_	_	
osition	ns:	Horizont	al (2F)	Cami Auto		Machine	Auto		Join	t Configuration	1 & Pass/L	ayer Sequer	nce	_	
roces	s Mode:	Man	uai	Semi-Auto) Ľ	Machine	Edao								
oint Ty	ype:		- Labo	Dertial	TTT-		Ellot			-> T: -					
enetra	ation:		Inica	Partial	EII=	Thickness N/A	rillet					T		>	
acking	g:	Material	Mathadi	NVA		Thickness. IN/A				and the set of the		/	s		
аскус	buging.	I les	Denth:	N/A								/			
lectro	de Exter	sion: contact	lip to work	distance = 3/	4"							/			
lozzle	Diamete	r(c): Tandam	Torch Nor	via	4						/				
Flux Classification: N/A											1				
Tungsten Electrode: Type: N/A Dia.: I							N/A					0.75.00			
Cleanin	a Proce	dures Stainles	s wire whe	el, stainless s	anding disl	k, stainless wire bru	sh as			1					
	3	required			3							1	T.		
								1				3			
CSA W	/186 Reb	ar Dire	ct Solice	India	ect Splice	Lan Soli	CP.	1	IN THE OWNER	LUS NOT					
Splice	Туре:	Reb	ar to Struc	tural Member	Only							1.1. 1. 1. 1. 1.			
dentifi	ication o	f Base Materi	al(for CSA	W186 indicat	e carbon e	quivalent, max, pho	sphorus &	sulphur c	content)					-	
Part	1			Specification	& Grade	derraierit, mani prio		ourprise o	Thick	ess or Dia		Snecial	Requiremen	ats	
I	5086 H1	16		opeoinediton	a olade				THOR	5mm		opeoiar	requiremen	no	
	5086 H	16								5mm				-	
dentifi	ication o	f Filler Materi	al							onnin				_	
Pro	CASS	i i mer materi	Trade	Name			lassificatio	n		Group		Filler Trea	tment	-	
ZMAW	D	OK Autrod 53	56	Tunio		ER5356	Jabomourie			Gloup		The free	Filler Treatment		
		ortridinod oo	00			2110000								_	
									_					_	
Neldin	n Param	eters												-	
Thick-	Weld		Pass	Welding	Dia.	Wire Feed Speed	Current	Volt	Current	Welding	Data Set	Gas Flow	Heat Inp	ut	
ness	Size/	Layer	Number	Process	(mm)	(IPM)	A	V	Polarity	Speed (IPM		Rate	(kJ/in		
(mm)	ETT				65 98	021 043)		(CFH			
Т	5	1	1	GMAW-P	1.2	504	199	24.3	DCEP	30	7,8	45	9.1	_	
	Sec	ondary Phase		1		343	1 1	23.8	1						
														_	
			-											_	
														_	
_														-	
														-	
														_	
loat to	l.							A	antance		6-	mpany Art	horizatio-	_	
rohen	eaunent	Ambient	_	Internasstan	n max :	N/A		ACC	septance		00	mpany Aut	ionzation	-	
Tenea	it min.	Ambient		interpassien	ip.max	19/74									
	0	FOAD A A		Interpassten	ip.min.:	IN/A									
ower	Source:	ESAB Aristo	mig 450												
Dond	SHIL NIC	DIIO					1								
Nork	Angle: 4	0 Travel 4	lo: 0º												
Progra	m Info E	rimary Phase	Puleo /	Ma Ar 12	mm										
Progra	m Info S	econdary Phase	ase: Puls	e, Al/Ma. Ar	1.2mm										
. ogra				et i mingi Aiti											
											Data	-		_	
											Date:	1			

Figure C3: Procedure for Superpulse, Pulse on Pulse

Ċ	B	ит	Flee	et Tec	hnolog	ау	WEL	DING PRO DATA SH	CEDUR	E		WPDS NO.: DATE:	Pulse/Spr 02/04/200	ay-Argon-2 8	F Rev.:	
Compa	iny Name	e: .	BMT Flee	t Technol	ogy							Ref. Standard	ds:	_		
Addres	is:		311 Legg	et Drive	Kanata, Ontar	io K2K 1Z	8					Ref. WPS:				
Weldin Shieldi	g Proces ng Gas 1	ses: ype:	1	GMAW 100% Ar	gon		Pulsed	d: ⊻Yes	No	2				Pulsed:	Yes	No
ositio	ns:		Horizonta	I (2F)							Join	t Configuration	h & Pass/L	ayer Seque	ince	_
roces	s Mode:		Manu	al	Semi-Auto	> 1	Machi	ne 🗌	Auto	NGEOS	12E STS		No.	CLOSE OF	CONSTRUCT	
Joint T	ype:		Butt	∠ T	ee 🗹 Cor	ner	-	Lap	Edge		10141	T	116			
Penetra	ation:		Comp	olete	Partial	ETT=		1	Fillet					-		
Backin	g:		Material:	N/A			Thickn	ness: N/A						/	s	/
Backgo	ouging:		Yes	Method:	N/A									/	4	
-			<u>No</u>	Depth:	N/A	419								/		
lectro	de Exter	ision:	contact tip	p to work	distance = 3/4	1							/			
VOZZIE	Diamete	er(s):	Tandem	orch Nox	xie								1			
Tunast	assilicat	on:	N/A	NIZA			_	Dia	NIZA						1.	
Cleanir	a Proce	dures	Stainless	wire whee	el stainless s	anding disl	stain	less wire bru	sh as			Î	/		12000	
orcarm	ig 11000	auros	required	wite wite	si, staniic33 3	anding dist	s, stann	1033 WITC DTU	511 45					1-	-	
										3				3	"	
CSA W	/186 Reb	ar	Direct	Solice	Indire	act Splice		I an Soli	ce.	1-21	12.52	The second			1	
Splice	Type:		Rebar	to Struct	ural Member	Only									and mark	
dentif	ication o	of Bas	e Materia	I(for CSA	W186 indicat	e carbon e	quivale	nt. max. pho:	sphorus &	sulphur c	content)					
Part					Specification	& Grade	-				Thick	ness or Dia.		Specia	Requireme	nts
1	5086 H	116										5mm		opeoid	rioquionio	
	5086 H	116										5mm				
dentif	ication o	of Fille	r Materia	1												_
Pro	cess			Trade	Name			C	lassificatio	on		Group		Filler Trea	atment	_
GMAW	1-P	OK A	utrod 535	6			ER53	56								
													-			_
Veldin	ng Paran	neters														
Thick-	Weld			Pass	Welding	Dia.	Wire	Feed Speed	Current	Volt	Current	Welding	Data Set	Gas Flow	Heat Inp	out
ness	Size/	1	Layer	Number	Process	(mm)	(IPM)	A	V	Polarity	Speed (IPM		Rate	(kJ/in)
(mm)	EII			-				100)		(CFH		_
Т	5		1	1	GMAW-P	1.2		472	215	24.3	DCEP	35	9,10	45	7.9	
	Sec	ondar	y Phase					453		20.0						
						_										
		-	_													
leat tr	eatment	:								Acc	ceptance		Co	mpany Au	thorization	
rehea	t min:	Ambi	ent		Interpasstem	np.max.:	N/A									
				_	Interpasstem	p.min.:	N/A									
ower	Source	ESA	B Ariston	nig 450												
Drive l	Jnit: Me	ch/Me	k						- C							
Penda	nt: ESA	B U8														
Nork A	Angle: 4	o, Tra	vel Angle	e: 0°												
Progra	Im Info F	Primar	y Phase:	Pulse, A	I/Mg, Ar, 1.2	mm										
rogra	im Info S	secon	dary Phas	se: Dip/Sp	oray, Al/Mg, /	Ar, 1.2mm										
																_
													Date:			

Figure C4: Procedure for Superpulse, Pulse on Spray

St/	1					WELDING PRO	CEDUR	E		WPDS NO .:	Pulse/Sho	rt-Argon-2F	
	B	MT Flee	et Tec	chnolog	ју	DATA SH	EET			DATE:	02/04/200	8	Rev.:
Compa	ny Name	e: BMT Fle	et Technol	logy					-	Ref. Standard	is:	Ise/Short-Argon-2F	
Addres	s:	311 Legg	et Drive	Kanata, Ontar	io K2K 12	28				Ref. WPS:			
Weldin	g Proces	ses:	GMAW			Pulsed: VYes	No					Pulsed:	Yes No
Shieldi	ng Gas T	Type: 1	100% A	rgon				2				L discut L	
Positio	ns:	Horizonta	ıl (2F)						Join	t Configuration	n & Pass/L	ayer Seque	nce
Proces	s Mode:	Manı	ial	Semi-Auto		Machine	Auto	2.2711					
Joint I Penetr	ype:	Butt	olete	Partial	FTT=		_] Edge Fillet	8188		-> Tı -	-		
Backin	g:	Material:	N/A		211	Thickness: N/A	mee	0.142		~		Г	s /
Backgo	ouging:	Yes	Method:	N/A								/	V
		No	Depth:	N/A								/	
Electro	de Exter	sion: contact t	p to work	distance = 3/4	t.						/		
Flux Cl	Classification: N/A							1.1.1.1			1		
Tungst	ngsten Electrode: Type: N/A Dia.: I												
Cleanin	ng Proce	dures Stainless	wire whe	el, stainless s	anding dis	k, stainless wire bru	sh as	-		1	1		•
		required						2				3	т.
CSA W	186 Reb	ar Diror	t Splice	Indice	ect Solice		CP.	-	1000				
Splice	Туре:	Reba	r to Struck	tural Member	Only			1570					
dentif	ication o	of Base Materia	I(for CSA	W186 indicate	e carbon e	equivalent, max. pho:	sphorus &	sulphur c	content)				
Part				Specification &	& Grade				Thickr	ness or Dia.		Special	Requirements
	5086 H	116	_						_	5mm			
ll	5086 H	116 of Fillor Matoria	1							5mm			
Pro	cess	Filler wateria	Trade	Name			lassificati	on		Group		Filler Trea	itment
GMAW	-P	OK Autrod 535	6	- turno		ER5356	- accomoda			oroup		T MOT TTOU	
										-			
Neldir Thick-	g Paran	neters	Pass	Welding	Dia	Wire Feed Sneed	Current	Volt	Current	Welding	Data Set	Gas Flow	Heat Input
ness (mm)	Size/ ETT	Layer	Number	Process	(mm)	(IPM)	A	V	Polarity	Speed (IPM)	Data Get	Rate (CFH	(kJ/in
Т	5	1	1	GMAW-P	1.2	437	158	25.0	DCEP	25	9,10	45	7.3
_	Sec	ondary Phase				260		13.3					
	-		-					-			_	-	
_	eatment					1		Ace	ceptance		Co	mpany Aut	horization
Heat tr	t min:	Ambient		Interpasstem	p.max.:	N/A							
Heat tr Prehea		ESAB Aristo	nia 450	Interpasstem	p.min.:	N/A							
Heat tr Prehea	Source	ab/Mak	g 450										
Heat tr Prehea Power Drive I	Source: Jnit: Me	cn/wek											
Heat tr Prehea Power Drive I Penda	Source: Jnit: Me nt: ESA	B U8											
Heat tr Prehea Power Drive I Penda Work /	Source: Jnit: Me nt: ESA Angle: 4	B U8 0, Travel Angl	e: 0°	104- 4- 4-						1			
Heat tr Prehea Power Drive I Penda Work / Progra	Source: Jnit: Me nt: ESA Angle: 4 Im Info F	B U8 0, Travel Angl Primary Phase: Secondary Pha	e: 0° Pulse, A se: Dip/S	N/Mg, Ar, 1.2r	nm Ar. 1.2mm								
Heat tr Prehea Power Drive I Penda Work / Progra	Source: Jnit: Me nt: ESA Angle: 4 Im Info F Im Info S	B U8 B U8 Or, Travel Angl Primary Phase: Secondary Pha	e: 0° Pulse, A se: Dip/S	N/Mg, Ar, 1.2r pray, Al/Mg, /	nm Ar, 1.2mm					1			
Heat tr Prehea Power Drive I Penda Work / Progra	Source: Jnit: Me nt: ESA Angle: 4 Im Info F Im Info S	B U8 O, Travel Angl Primary Phase Secondary Pha	e: 0° Pulse, A se: Dip/S	NI/Mg, Ar, 1.2r pray, Al/Mg, <i>I</i>	nm Ar, 1.2mm								

Figure C5: Procedure for Superpulse, Pulse on Short

APPENDIX E

DISTORTION COMPARISON BETWEEN FCAW and T-MCAW (10" WIDE BASE PLATES)

Distance from Edge, mm

Figure E.2: Baseline Location B – Relative Displacement

Figure E.3: Baseline At Stiffener – Relative Displacement

Figure FF.1: Plate 2 Location A – Net Improvement

Figure F.2: Plate 2 Location B – Net Improvement

Figure F.3: Plate 2 At Stiffener – Net Improvement

Evaluation of Advanced Gas Metal Arc Welding and Distortion Mitigation Techniques for Thin Panel Steel and Aluminum Structures

Figure F.5: Plate 3 Location B – Net Improvement

Figure F.6: Plate 3 At Stiffener – Net Improvement

Figure F.7: Plate 4 Location A – Net Improvement

Figure F.8: Plate 4 Location B – Net Improvement

Evaluation of Advanced Gas Metal Arc Welding and Distortion Mitigation Techniques for Thin Panel Steel and Aluminum Structures

Figure F.9: Plate 4 At Stiffener – Net Improvement

APPENDIX F

DISTORTION PLOTS FOR FILLET WELDS T-MCAW PROCESS (10" WIDE BASE PLATES)

Before Weld													
Displacement w.r.t to Frame, mm													
	Α	Т	В	Abs Diff									
1	9	58.5	10	1									
2	8	58	9	1									
3	6.5	56.75	7.5	1									
4	6	55.5	6.5	0.5									
5	4.5	54	5	0.5									
6	3.5	52.5	3	0.5									
7	2.5	51.75	2.5	0									
8	1.5	51	1.5	0									
9	1	50.5	1	0									
10	0.5	50	0.5	0									
11	1	50.5	0.5	0.5									
12	1	51	1	0									
13	1.5	51	1	0.5									
14	1	51	1	0									
15	2	51.75	1	1									
16	3	52.5	1.5	1.5									
17	4	53.25	2	2									
18	5.5	54	3	2.5									
19	7	55.5	4.5	2.5									
20	8.5	57	6	2.5									
21	10.5	59	7.5	3									
22	11	59.5	7.5	3.5									
23	11.5	60	9.5	2									

Table F.1: T-MCAW_Stiff_1	_Benchmark Distortion Data
---------------------------	----------------------------

After Weld													
Displacement w.r.t to Frame, mm													
	Α	Т	В	Abs Diff									
1	5.5	55.5	5.5	0									
2	5.5	55	5.5	0									
3	4.5	54	4.5	0									
4	4	53	4.5	0.5									
5	3.5	52	3.5	0									
6	2	51	2.5	0.5									
7	1.5	50.5	2	0.5									
8	1	50	1	0									
9	1	49.5	0.5	0.5									
10	0.5	49	0.5	0									
11	1	49.5	0.5	0.5									
12	1.5	50	1.5	0									
13	1.5	50.25	1.5	0									
14	1	50.5	1	0									
15	2	51	1.5	0.5									
16	3	51.5	2	1									
17	3.5	52.5	2	1.5									
18	4.5	53.5	3.5	1									
19	4	54.5	4.5	0.5									
20	7.5	55.5	5	2.5									
21	8.5	57	5.5	3									
22	9.5	57.5	6	3.5									
23	10	58	6.5	3.5									

Table F.2: T-MCAW_Stiff_2_92Ar/8C02 Distortion Data

	Before Weld						Ten	sion No	<mark>o Weld</mark>				After W	eld	
D	isplacem	ent w.r.t	to Frame	e, mm		Di	splacem	ent w.r.t	to Frame	e, mm	0	isplacem	ent w.r.t f	o Frame	, mm
	Α	Т	В	Abs Diff			Α	Т	В	Abs Diff		Α	Т	В	Abs Dif
1	11.5	60	11.5	0		1	6.5	55	6.5	0		6.5	55	7	0.5
2	11.5	59.5	11.5	0		2	6.5	54.5	6.5	0		2 <u>6.5</u>	54.5	7	0.5
3	10.5	58	11	0.5		3	5	53.5	5	0	;	<mark>5.5</mark>	53.5	6	0.5
4	10	56.5	10	0		4	5.5	52.5	5.5	0		1 <mark>6</mark>	52.5	7	1
5	8	55	8.5	0.5		5	4.5	51.5	4.5	0		5 5	51	6.5	1.5
6	6.5	53.5	6.5	0		6	3	50.5	3	0		3 .5	49.5	5	1.5
7	5.5	52.5	4.5	1		7	2	49.5	2	0		7 <mark>2.5</mark>	49	4	1.5
8	4.5	51.5	4	0.5		8	1.5	48.5	1.5	0		3 2	48.5	3.5	1.5
9	3.5	50.25	3	0.5		9	1	47.75	1	0		2	48	3	1
10	3	49	2	1		10	0.5	47	0	0.5	10	1 .5	47.5	2.5	1
11	3	49.5	2	1		11	1	47.25	0.5	0.5	1	2	48	2.5	0.5
12	3	50	2.5	0.5		12	1.5	47.5	1	0.5	1:	2 2	48.5	2.5	0.5
13	3.5	49.75	2.5	1		13	1.5	47.5	1	0.5	13	8 2	48.5	3	1
14	3	49.5	2	1		14	1	47.5	0.5	0.5	14	1 2	48.5	2.5	0.5
15	3	50	2.5	0.5		15	1	47.75	0.5	0.5	1:	5 2	49	2.5	0.5
16	4	50.5	3.5	0.5		16	1.5	48	1	0.5	10	6 <mark>2.5</mark>	49.5	3	0.5
17	4	51.25	4	0		17	1	48.25	0.5	0.5	1	2.5	49.5	2.5	0
18	4.5	52	4.5	0		18	1.5	48.5	1.5	0	18	3	49.5	3.5	0.5
19	5.5	52.75	5	0.5		19	2	49.25	1.5	0.5	19	3	50.25	3.5	0.5
20	6.5	53.5	6.5	0		20	3.5	50	2.5	1	2) 4	51	4	0
21	7.5	55	8	0.5		21	3.5	51	2	1.5	2	4	52	4	0
22	7.5	55.25	8	0.5		22	3.5	51.75	2	1.5	2	2 4	52.75	4	0
23	7.5	55.5	8	0.5		23	3.5	52.5	2	1.5	2	8 4	53.5	4	0

	В	etore V	Veld			l ensi	on No V	Neld			ŀ	After We	eld	
D	isplacem	ent w.r.t	to Frame	e, mm	Di	splacemer	t w.r.t to	Frame, n	nm	Di	splacem	ent w.r.t t	o Frame	, mm
	Α	Т	в	Abs Diff		Α	Т	в	Abs Diff		Α	Т	в	Abs Diff
1	9.5	52.5	10.5	1		1 <u>5.5</u>	49	6.5	1	1	6	48.5	7.5	1.5
2	9.5	52	10.5	1		2 5.5	48.5	6.5	1	2	6	48	7.5	1.5
3	8.5	50.75	9.5	1		3 4.5	47.5	5.5	1	3	5	47	6.5	1.5
4	8	49.5	8.5	0.5		4 5	46.5	5.5	0.5	4	5.5	46	7.5	2
5	6.5	47.75	7	0.5		5 4	45.25	5	1	5	4	45.25	7.5	3.5
6	5	46	5	0		6 2.5	44	3.5	1	6	3	44.5	6.5	3.5
7	4	45.25	4.5	0.5		7 1.5	43.5	2.5	1	7	2.5	44	6.5	4
8	2.5	44.5	3	0.5		8 1	43	1.5	0.5	8	1.5	43.5	5.5	4
9	2	43.75	2	0		9 1	42.5	1	0	9	2	43	5	3
10	1.5	43	1	0.5	1	0 0.5	42	0.5	0	10	1	42.5	4	3
11	1.5	43.5	1	0.5	1	1 1	42.5	1	0	11	1.5	43.25	4.5	3
12	2	44	1.5	0.5	1	2 1.5	43	1	0.5	12	2	44	5	3
13	2	44	2	0	1	3 1.5	43	1.5	0	13	2.5	43.75	5.5	3
14	2	44	2	0	1	4 1	43	1	0	14	2	43.5	5	3
15	2.5	44.75	2	0.5	1	5 1	43.25	1	0	15	2.5	44.25	5.5	3
16	3	45.5	3	0	1	6 1.5	43.5	1.5	0	16	2.5	45	5.5	3
17	3.5	46.5	3.5	0	1	7 1.5	44.25	2	0.5	17	3	45.5	6	3
18	5	47.5	5	0	1	8 2	45	3	1	18	4	46	7	3
19	6	49	6	0	1	9 3	46	4	1	19	4.5	47.25	7.5	3
20	7.5	50.5	7.5	0	2	0 4	47	5.5	1.5	20	5	48.5	7.5	2.5
21	9	52	9	0	2	1 3	48.5	5	2	21	4.5	49	6.5	2
22	9	52.75	9	0	2	2 3	49.25	5	2	22	4.5	49.75	5.5	1
23	9	53.5	9	0	2	3 3	50	5	2	23	4	50.5	5.5	1.5

Table F.3: T-MCAW_Stiff_3_85Ar/15C02 Distortion Data

Table F.4: T-MCAW_Stiff_4_75Ar/25C02 Distortion Data

Before Weld						Tensi	on No V	Weld			F	After W	eld	
Dis	splacem	ent w.r.t t	to Frame	, mm	Dis	olacemen	t w.r.t to	Frame, r	nm	Di	splacem	ent w.r.t t	o Frame	, mm
	Α	Т	В	Abs Diff		Α	Т	В	Abs Diff		Α	Т	В	Abs Diff
1	9.5	68	10	0.5	1	6	65	4	2	1	5	63.5	4.5	0.5
2	9.5	67.5	10	0.5	2	6	64.5	4	2	2	5	63.5	4.5	0.5
3	8.5	66	9	0.5	3	5	63.25	3	2	3	4	62.25	3.5	0.5
4	7.5	64.5	8	0.5	4	6	62	4	2	4	5	61	5	0
5	6	62.75	6.5	0.5	5	5	60.5	3.5	1.5	5	4	59.5	5	1
6	4.5	61	4.5	0	6	3	59	2	1	6	2.5	58	4	1.5
7	3	60	3	0	7	2	58.25	1.5	0.5	7	2	57.5	3.5	1.5
8	2.5	59	2.5	0	8	1.5	57.5	1	0.5	8	1.5	57	3	1.5
9	2	58.25	2	0	9	1	57	1	0	9	1.5	56.75	2.5	1
10	1.5	57.5	1	0.5	10	0.5	56.5	0.5	0	10	1	56.5	1.5	0.5
11	2	58	1	1	11	1	57	0.5	0.5	11	1.5	57.25	2.5	1
12	2	58.5	1.5	0.5	12	1	57.5	1	0	12	2	58	2.5	0.5
13	2	58.5	1.5	0.5	13	1.5	57.5	1	0.5	13	2	57.75	2.5	0.5
14	2	58.5	1	1	14	1	57.5	1	0	14	2	57.5	2	0
15	2.5	59.25	1.5	1	15	1.5	58	1	0.5	15	2.5	57.5	2.5	0
16	4	60	3	1	16	2	58.5	1	1	16	3	57.5	3	0
17	4.5	61	3	1.5	17	2	58.75	1.5	0.5	17	3	58.5	3	0
18	6	62	4	2	18	2.5	59	2.5	0	18	3.5	59.5	3.5	0
19	7.5	63.75	6	1.5	19	3	60.25	3.5	0.5	19	5	60.5	3.5	1.5
20	9.5	65.5	7.5	2	20	4.5	61.5	5	0.5	20	6	61.5	4	2
21	11.5	68	9.5	2	21	4	63	5	1	21	6.5	63	3.5	3
22	11.5	68.5	9.5	2	22	4	63.75	5	1	22	6.5	63.5	3.5	3
23	11.5	69	9.5	2	23	4	64.5	5	1	23	6.5	64	3.5	3

Distance from Edge, mm

Figure F.1: Net Displacement along Longitudinal Section A for T-MCAW Stiffener Benchmark Assembly

Figure F.2: Net Displacement along Longitudinal Section B for T-MCAW Stiffener Benchmark Assembly

Figure F.3: Net Displacement along Longitudinal Section T for T-MCAW Stiffener Benchmark Assembly

Figure F.4: Net Displacement along Longitudinal Section A for T-MCAW Stiffener Assembly 2

Figure F.5: Net Displacement along Longitudinal Section B for T-MCAW Stiffener Assembly 2

Figure F.6: Net Displacement along Longitudinal Section T for T-MCAW Stiffener Assembly 2

Figure F.7: Net Displacement along Longitudinal Section A for TMCAW Stiffener Assembly 3

Figure F.8: Net Displacement along Longitudinal Section B for TMCAW Stiffener Benchmark Assembly 3

Figure F.9: Net Displacement along Longitudinal Section T for TMCAW Stiffener Benchmark Assembly 3

Figure F.10: Net Displacement along Longitudinal Section A for TMCAW Stiffener Assembly 4

Figure F.11: Net Displacement along Longitudinal Section B for TMCAW Stiffener Benchmark Assembly 4

Figure F.12: Net Displacement along Longitudinal Section T for TMCAW Stiffener Benchmark Assembly 4

Evaluation of Advanced Gas Metal Arc Welding and Distortion Mitigation Techniques for Thin Panel Steel and Aluminum Structures

Figure F.14: Plate 2 Location B – Net Improvement

Figure F.16: TMCAW_Stiff_3 -Net Improvement at Location A.

Figure F.17: TMCAW_Stiff_3 -Net Improvement at Location B.

Figure F.18: TMCAW_Stiff_3 -Net Improvement at Location T.

Figure F.19: TMCAW_Stiff_4 -Net Improvement at Location A.

Figure F.20: TMCAW_Stiff_4 -Net Improvement at Location B.

Figure F.21: TMCAW_Stiff_4 -Net Improvement at Location T.

APPENDIX G

NET DISPLACEMENTS FOR FCAW and T-MCAW (4' x 10' HSLA 80 BASE PLATES)

	Before Weld - Plate 7													
				Dis	placeme	<mark>nt w.r.t to</mark>	Frame,	mm						
	Α	В	С	D	E	F	G	Н	I	J	К			
1	22	26	27.5	27.5	28.5	160	28	26.5	25	24	21			
2	23.5	28	29	28.5	29.5	160	28	27	26.5	24	20			
3	24	28	29	28.5	28.5	159.5	28	26	25	23.5	19			
4	23.5	27	28.5	29.5	29.5	159	27.5	26	25	23.5	19.5			
5	21	24.5	26	26	27	159	27	26	25	23.5	20.5			
6	18.5	22.5	24	25.5	25.5	158.5	26.5	25.5	25	23	21			
7	16.5	21	24	25	25.5	158	25.5	25	24	23	20.5			
8	16	21	24	24	25.5	159	26	25.5	24	23.5	20.5			
9	16.5	21	23	25	25	159	25.5	25	24	23	21			
10	17.5	22.5	23.5	25	26.5	159	25	24.5	23.5	23	21			
11	20	24	24.5	26	25.5	159.5	24.5	24	23	23	20.5			
12	21.5	25	26	27	26.5	160	25	24.5	23	23	20.5			
13	21.5	26	26.5	28	28	161	26	25	23.5	22	20.5			
14	17.5	22	23.5	25	24.5	160	24	23.5	22.5	20.5	20			
15	16	21	23	24.5	25	161	25	24.5	24	22	20			
16	15	25	23	24.5	25	162.5	26.5	26	24.5	23	20			
17	14.5	19.5	22	24.5	25	161.5	25.5	25.5	24.5	22.5	20.5			
18	15	19.5	23	24.5	26	162	24.5	24.5	23.5	22	21			
19	19	23	25.5	26.5	27.5	163	25	24.5	23.5	22	21			
20	21.5	25	26.5	28.5	29	164.5	24.5	24.5	23.5	22	19.5			
21	23	27.5	29	29.5	30.5	165.5	25.5	25	23.5	21.5	19			
22	23.5	27.5	29	29.5	31.5	166.5	26	25	22.5	20.5	17			
23	22.5	26.5	28.5	29.5	31	167	26	25	22.5	20	17			

Table G.1: FCAW Benchmark Plate 7 Distortion Data Before Weldin	ng
---	----

Table G-2: FCAW Benchmark Plate 7 Distortion Data After Welding

					After V	Veld -	Plate 7				0	
				Dis	placeme	nt w.r.t to	Frame, I	mm				
	Α	В	С	D	E	F	G	Н	I	J	ĸ	
1	24.5	27	26.5	27	25	155	20	19	19	19	16.5	
2	26	28	27.5	28	26	155	20.5	20	20	20	17.5	
3	25.5	28	27.5	28	25	154.5	21	20	20.5	20.5	18.5	
4	24	26.5	26.5	28.5	26.5	154	21.5	21	22	22	19.5	
5	20	23	23	24.5	23	154	22	22.5	23.5	23.5	22.5	
6	16.5	19	20.5	23	21.5	153.5	22.5	23.5	25.5	26	25	
7	13.5	17	19	22	21.5	153	22.5	24.5	26	26.5	26	
8	12.5	16.5	18.5	20.5	21.5	153.5	23	24.5	26.5	27	26	
9	13.5	17.5	18	21.5	21	154	22.5	24.5	25	26.5	25	
10	16.5	20	20	22.5	23	154.5	22	23	23.5	23.5	23	
11	21	24.5	23	24.5	22.5	154	20.5	21.5	21.5	22	20.5	
12	25.5	27.5	26	26.5	24.5	155	21	21.5	21.5	21.5	19.5	
13	27.5	29	27.5	27.5	25.5	156	22	22	22.5	21.5	20	
14	23	25	24	24	21.5	154.5	20.5	21.5	22	22.5	22	
15	19.5	22.5	22.5	23	21.5	156	22	23.5	25	25	24.5	
16	17	20	21	22	21.5	157	23.5	25	26.5	27	27.5	
17	15.5	18.5	19.5	22	21	156.5	21.5	25	26	26.5	28	
18	15.5	18.5	20	21.5	22	157	20.5	23	24	25.5	26	
19	18.5	21.5	22.5	23	22.5	158	21	22	22.5	23.5	24.5	
20	21	24	24.5	24.5	24	159	19.5	20.5	21	21.5	20.5	
21	22	25	25.5	25.5	25	159.5	20.5	20	20	19.5	18.5	
22	22	24.5	25	25.5	25.5	160.5	20	19	18.5	17	15	
23	21	24	24.5	24.5	25.5	161	20	19	17.5	16.5	14	

Е

					Before	Weld -	Plate 8					
				Di	isplaceme	ent w.r.t to	Frame, n	nm				
	Α	В	С	D	E	F	G	Н	I	J	K	
1	13.5	17	19	20.5	23	151	22.5	21	19.5	17.5	13	
2	15	18.5	20.5	22	24	151	23	21.5	20	18.5	14	
3	16	19.5	21.5	22.5	23	150	23	21.5	19.5	19	15	
4	17	20	22.5	24	24.5	149.5	22.5	21	20.5	19.5	15	
5	17	20.5	22.5	22.5	23	149.5	21.5	20.5	19.5	19	16	
6	18.5	22	23.5	23.5	22.5	149	20.5	19.5	18	17.5	14.5	
7	21	24	25	24.5	23	148.5	19	18	16.5	15	12	
8	22.5	25.5	26	25	24	149	20	18	16.5	14.5	11.5	
9	22	25	24.5	25	23.5	149	20	18.5	16.5	15.5	12.5	
10	19.5	22.5	22.5	23.5	23.5	149	20.5	19	18	16.5	14	
11	17	20.5	20.5	21.5	22.5	149	20.5	20	19	18.5	16.5	
12	17	19.5	19	21	22.5	150	21	20.5	19.5	19	16.5	
13	18	20.5	20	21.5	23	150.5	22	21	20	19	17	
14	17	19.5	19.5	20	21	150	20	19	18	16.5	14.5	
15	19	22.5	22	22.5	22.5	150	21	19.5	18.5	16.5	15.5	
16	21.5	24.5	24.5	24	23.5	151	21	20.5	18.5	17	14.5	
17	20.5	23.5	24	24.5	23.5	150.5	20.5	20	18.5	17	15	
18	18.5	21.5	23	24	24.5	150.5	21	21	19	17.5	17	
19	17	20.5	22	23.5	25	152	21.5	22	20.5	20	19.5	
20	16.5	20	22	24.5	26.5	153	23	22.5	21.5	21	18	
21	17	21	23	25	26.5	154	24	23.5	22.5	21.5	18.5	
22	19.5	22.5	24.5	27	28.5	155	25	24	22.5	20.5	17	
23	20	23	25.5	27.5	29	155.5	25.5	24.5	24	20.5	17	

Table G-3: T-MCAW Benchmark Plate 8 Distortion Data Before Welding

 Table G-4: T-MCAW Benchmark Plate 8 Distortion Data After Welding

 After Weld No Tension - Plate 8

				Atter	weid r	NO TENS	sion - P	late 8				
				Di	isplaceme	ent w.r.t to	Frame, n	nm				
	Α	В	С	D	E	F	G	Н	I	J	K	
1	11	13	14.5	16	15.5	145	16.5	17	17	17	13	
2	13.5	15.5	17	17.5	16.5	145	17	17.5	17.5	17.5	14	
3	16.5	18	19	19	16.5	144.5	16.5	17.5	17	17.5	14.5	
4	18.5	20.5	21.5	21.5	18.5	144	16.5	17.5	18	18	14.5	
5	21.5	23.5	23.5	21.5	18	143.5	16	16.5	16.5	16.5	14	
6	26	27	26.5	24	18	143	15	15	14.5	14	11	
7	31	31	29.5	26.5	20	143	13.5	12.5	11.5	11	7	
8	33	33	31.5	27	20.5	143	13.5	12.5	11	10	6.5	
9	31.5	32	29.5	27.5	20	143	14	13.5	11.5	11.5	7.5	
10	26	27	25.5	24	20.5	143	15	14.5	13.5	13.5	9.5	
11	20.5	22	20.5	20	18.5	143	15	16.5	16.5	16.5	15	
12	17.5	19	17.5	18	17	144	16	17.5	18.5	18	17	
13	18.5	19.5	18	18.5	18	144.5	16.5	18.5	18.5	19.5	18	
14	19	19.5	18.5	18	16.5	142.5	15	16	17	17	15.5	
15	24	24.5	23	21.5	18.5	143.5	15.5	16.5	17	16	15	
16	28.5	28.5	26.5	24	19.5	144.5	16	16.5	17	16.5	15	
17	27.5	28	25.5	24	20	144	15	16	16.5	16	15	
18	23.5	24	23.5	22	20	144	15	16	16.5	16.5	17	
19	20	20.5	20.5	20	19.5	145	15.5	17	17	17.5	18.5	
20	16.5	18.5	18.5	19.5	19.5	145.5	16	17	17	17.5	17	
21	16.5	18.5	18.5	19.5	20.5	146.5	17	17.5	17.5	17.5	16.5	
22	16.5	18.5	19.5	21	21.5	147	17	17	17	16.5	15	
23	17	19	20.5	21.5	21.5	147.5	17.5	17.5	17	16	14.5	

				l	Before	Weld -	Plate 3	3				
				Dis	placeme	nt w.r.t to	Frame, I	nm				
	Α	В	С	D	E	F	G	Н	I	J	К	
1	24	27	27	28.5	30	164	30.5	29.5	25	22	17	
2	24.5	27.5	28	28.5	30.5	163.5	31	30	26.5	24	19	
3	24.5	27	27	27.5	28.5	162	31	30	27	23.5	19.5	
4	23.5	26	27	28.5	30	161	30	30	27.5	24.5	20	
5	20.5	23.5	24.5	25	27.5	159.5	29.5	29.5	27.5	25	21	
6	17	21	23	24	25	158.5	28	29	26.5	25	21	
7	15	19.5	22	24	25	157	27	28	26	23.5	20.5	
8	15	19.5	22	23	25	156.5	26.5	27.5	25.5	23.5	20	
9	16	19	20.5	23	23.5	156	26	26.5	25	24	19.5	
10	16.5	19	19.5	21.5	24	155.5	25	26	25	23.5	20.5	
11	18	19.5	19	20.5	21.5	154	23.5	25.5	25.5	24	20.5	
12	19.5	20.5	19.5	20.5	21.5	154	23.5	26	25.5	24	21	
13	20	21	19.5	21	22	154	24.5	26	25.5	23.5	21	
14	17	17.5	17	18	19	151.5	22	23.5	23.5	22	20	
15	15.5	17	16.5	17.5	19	151.5	22	23.5	23.5	22	19	
16	15.5	17.5	17	18	19	151.5	22	23	22.5	21.5	19	
17	15	16.5	16.5	18.5	19	150	21	21.5	21.5	20	19.5	
18	15.5	17	17.5	18.5	19.5	149.5	19.5	21	20	20.5	20	
19	17	18	18.5	19	20	149.5	20	21	21.5	21.5	21	
20	18.5	18.5	19	19.5	20.5	149.5	19.5	21.5	21.5	22	20.5	
21	17	17.5	18.5	19.5	21	150	19.5	20.5	21	20	20	
22	13.5	14.5	16	18.5	20	150.5	18	18	17.5	17	17	
23	10.5	12	14	17	19.5	150.5	17	16.5	15.5	15	15	

Table G-3. FCAW	Trate 5 Distortion	Data, NO	-161151011	DEIUIE	weiung
Table C-5. FCAW	Plate 3 Distortion	Data No.	Tonsion	Rofora	Wolding

Table G-6: FCAW Plate 3 Distortion Data, Tension Before Welding

				Tensic	<mark>on No V</mark>	Veld -	Plate 3			Ŭ	
				Displac	ement w.	<mark>.r.t to Fra</mark>	me, mm				
	Α	В	С	D	Е	F	G	Н	Ι	J	K
1	18	19.5	19	18.5	20	154.5	19	19	17.5	15.5	13.5
2	20	21	20	20	21	154	21	21.5	19.5	18	15
3	20	22.5	20	20	20.5	153	21.5	21.5	21	19	17.5
4	20.5	22	22	21.5	22.5	152.5	21.5	22.5	21.5	21.5	18
5	20	21.5	20.5	19	21	151.5	22	22.5	22.5	22	19
6	18	19.5	20	19.5	19.5	151	21.5	22	21.5	21.5	19
7	16	18.5	19.5	19.5	19.5	150	20	20.5	20.5	20	17.5
8	16	18.5	19.5	19	20	150	20	21	21	20	17.5
9	16.5	19	18.5	19.5	19.5	150	19	20.5	20.5	19.5	17
10	17	19	18.5	19.5	20	149.5	19	20.5	20.5	20	18
11	18	19	17.5	18.5	18.5	149	18.5	20.5	20.5	20.5	19.5
12	19.5	20.5	18.5	19	19.5	149.5	19	21	21.5	20.5	19
13	20	21	19	19.5	20	149.5	20	22	22	21	19
14	17	18	16.5	16.5	17	147.5	17.5	19.5	21	19.5	18
15	17	18	17	17.5	17.5	148	18.5	20	20	19.5	17.5
16	17.5	18.5	17.5	17.5	17.5	148.5	18.5	20	20	19	17
17	16.5	17.5	17	18.5	17.5	147.5	17.5	19.5	19.5	18	17.5
18	16.5	18	17.5	17.5	18	147.5	17	19	19	18	18.5
19	17.5	18	18	18.5	19	147.5	18	19.5	19	19	20
20	18	18	18	18.5	19	148	18	19	19.5	19	18.5
21	17.5	17	17.5	18.5	19	149.5	18.5	19	18.5	18	18
22	13.5	14	15.5	17.5	18.5	149.5	16	16.5	15.5	14.5	14
23	10	12	13.5	16.5	18	149.5	14.5	14	13	13	12

					After V	Veld -	Plate 3					
				Dis	placeme	<mark>nt w.r.t to</mark>	Frame,	mm				
	Α	В	С	D	E	F	G	Н	I	J	К	
1	25	25.5	23.5	21.5	21	154	18.5	18.5	17	16.5	13.5	
2	26	26.5	24	22.5	22	153.5	20.5	21	20	19	16	
3	26	26.5	24	22.5	21	152.5	21.5	22	21.5	21	18.5	
4	25.5	26	24.5	24.5	23	152	22	24	22.5	23.5	20	
5	21.5	23	22.5	21.5	21	151	23	25	24	25	22	
6	16.5	19.5	20	20	19.5	150.5	23	25	24	25.5	22	
7	13	17	19.5	20.5	20	149.5	22	24	23.5	24	21	
8	13	17	19.5	20	20.5	150	22.5	24.5	23.5	23	20.5	
9	14.5	17.5	18.5	20.5	20	150	22	24	23.5	23	19	
10	16	18	18.5	19.5	21	150	22	24	24	23	20	
11	18.5	19.5	18.5	19	19	149.5	21.5	25	25.5	24.5	22	
12	20	20.5	19	21	20	150	23	25.5	27.5	27	25	
13	20.5	21	19.5	20	21	150.5	24	27.5	29.5	29.5	28	
14	17	18	17	17	17.5	148.5	22.5	25.5	28.5	29	30	
15	16.5	18	17	17.5	18	149	22.5	26	28.5	29.5	30	
16	17.5	19.5	18.5	19	19	150	22.5	25	27	27.5	27.5	
17	19	20	19.5	20.5	20	149.5	21	23.5	25	24.5	24	
18	21	21.5	21.5	21.5	21	149.5	20	22	22.5	22.5	22	
19	23.5	23.5	23	22.5	21.5	150.5	20.5	21.5	22	22	22	
20	24	23.5	23	23	22.5	151	20.5	20.5	21.5	21.5	20	
21	22.5	22	22	23	23	151.5	20.5	20.5	20.5	20.5	19.5	
22	18.5	19	19.5	21	22	152.5	18	18	18	17	16	
23	16.5	16.5	17.5	19.5	21	153	16	16	15	14.5	14	

Table G-7: FCAW Plate 3 Distortion Data, Tension After Welding

 Table G-8: T-MCAW Plate 9 Distortion Data, No-Tension Before Welding

					Before	Weld -	Plate 9)				
				Dis	placeme	<mark>nt w.r.t to</mark>	Frame,	mm				_
	Α	В	С	D	E	F	G	Н	I	J	К	
1	6	12.5	17	19.5	23	157.5	25	24	19.5	18	13	
2	10.5	17.5	20.5	22.5	25.5	157.5	25.5	25	20.5	19	14	
3	15.5	26.5	23.5	25.5	26.5	157	26	24.5	20.5	19	14	
4	19	25	26.5	28.5	29	156.5	26	23	21.5	19.5	15	
5	20.5	26	26.5	26.5	27	156	25	22.5	21	19.5	15.5	
6	19.5	25	26	26.5	26	155.5	25.5	22	20.5	19	15.5	
7	17.5	22.5	25	26	25.5	154.5	24.5	21	18.5	17	13.5	
8	16	21	24	24.5	25.5	154.5	24.5	21	19	17	14	
9	14.5	19.5	22	24	24	153.5	24.5	21	19.5	17	14	
10	14.5	19.5	21	23.5	25	153	24.5	21.5	19.5	17.5	15.5	
11	16.5	20.5	21.5	22.5	24.5	152	24	26	19.5	18.5	17	
12	18.5	23	24	25	25.5	152.5	23.5	21	20	19	17	
13	21	25	25.5	26.5	26	153.5	23	21	19.5	18.5	17	
14	20	23	24.5	24.5	23.5	151.5	21	18.5	17.5	16.5	15	
15	20	23.5	24.5	25	24	152.5	21.5	19	18	16.5	14.5	
16	19.5	23	24.5	24.5	24.5	153	22.5	19.5	18.5	17	15.5	
17	16.5	20.5	22	23.5	23.5	152.5	21.5	19.5	18.5	17.5	16	
18	15.5	19	21.5	22.5	24	152.5	21.5	20	19	17.5	18	
19	16.5	19.5	22	23.5	24.5	154	22.5	21	19.5	19	19	
20	17.5	21.5	24	25	25.5	154.5	22.5	21	20.5	19	18	
21	18.5	22.5	25	26.5	26.5	155	22.5	21.5	20.5	19.5	17	
22	19	23	25.5	26.5	27	156	22.5	21.5	20	18.5	16.5	
23	18	22.5	25.5	26.5	27	156.5	22.5	21.5	20	18.5	16.5	
Tension No Weld - Plate 9												
---------------------------	------	------	------	---------	---------	-------------	--------	------	------	------	------	
				Displac	ement w	.r.t to Fra	me, mm					
	Α	В	С	D	Е	F	G	Н	I	J	К	
1	4.5	9	11	13	16	150	13.5	14	13.5	14.5	9	
2	9.5	13	15	16	18	150	15	15.5	15	16	10	
3	14	17.5	18.5	18.5	19	149.5	16.5	16	16.5	16.5	12.5	
4	17	20.5	21	21.5	21.5	149	17	17	17	17	13	
5	18	21	20.5	19.5	20	148.5	16	17	17.5	17	14	
6	17	19.5	20	19.5	18	148	16	16.5	16.5	16.5	14	
7	14.5	18.5	19	19	18	146.5	15.5	15.5	15.5	15	11.5	
8	13.5	16.5	18.5	18	18	146.5	15.5	15.5	15.5	14.5	11.5	
9	12.5	15.5	16.5	17.5	16.5	146	15.5	15.5	15.5	15	12.5	
10	13	15.5	16	17	17.5	145.5	16	15.5	16	15.5	14	
11	15	17	16	17	17	145	15	15.5	16	16	15	
12	17	18.5	18	18	18	145	15.5	16	16.5	16.5	15.5	
13	18	20	19.5	19.5	18.5	145.5	15.5	16	16	16.5	15.5	
14	16	18	18	17.5	16	143.5	13.5	13.5	14	14.5	13.5	
15	16	18.5	18.5	18	16.5	143.5	13.5	14	14	14.5	13	
16	16	18.5	18.5	18	17	145.5	14.5	15	15	14.5	13.5	
17	14.5	16.5	16.5	17	16.5	145	14	14.5	15	15	15	
18	14	15	16.5	16.5	17	145	14	15	15.5	16	17	
19	15	16	17	17	17.5	146	15	16	16.5	16.5	18	
20	15.5	17.5	18.5	19	18.5	147	15.5	16	16.5	17	16.5	
21	16.5	18.5	19.5	19.5	19.5	148.5	16	16.5	16.5	17	16	
22	16	18	19.5	19.5	20	149	15.5	16	16	16	15	
23	15	17.5	19	19	19.5	149.5	15.5	15.5	16	16	15	

Table G-9: T-MCAW	Plate 9	9 Distortion	Data,	Tension	Before	Welding
				-		

Table G-10: T-MCAW Plate 9 Distortion Data, Tension After Welding

After Weld No Tension - Plate 9												
				Dis	placeme	nt w.r.t to	Frame, I	mm				
	Α	В	С	D	Е	F	G	Н	I	J	К	
1	8	12	13.5	14.5	17	150	15	15	14	10.5	8	
2	13.5	17	18	18	19.5	150	17	17	16	13.5	10.5	
3	19	22.5	22.5	21	20.5	149.5	18	17.5	17	15.5	12.5	
4	23	26	25.5	25	23.5	149	19	19.5	19.5	17	14	
5	25.5	27.5	26	24	22	148.5	20	21	21.5	19.5	17	
6	23.5	25.5	25	24	21	148	20.5	21.5	23	21.5	20.5	
7	19.5	22	22.5	22	20	147	20.5	22.5	24	23.5	23	
8	16	18.5	19.5	19	19.5	146.5	21.5	24	26	26	26.5	
9	13	16	16.5	18	18	146	21.5	24.5	27	27	26.5	
10	13	15.5	15.5	17.5	18	145.5	21.5	24	26	26	26.5	
11	16	18	17	18	18	145	20	22.5	24	23.5	24	
12	20.5	22.5	21.5	21.5	20	145.5	19	21	21.5	20.5	20	
13	25.5	27	25.5	24	21.5	146	18.5	19	18.5	17	16	
14	26.5	27.5	26	23	19	144.5	15.5	15.5	15	13	12.5	
15	27	27.5	26	23.5	19.5	145	16	15.5	14.5	12.5	10.5	
16	25	26	25	23	19.5	146	16.5	16.5	15.5	13.5	12	
17	20	21.5	21	21	19	146	16.5	17	16	14.5	14.5	
18	16.5	18	19	18.5	18.5	146	16	17	16.5	16	17	
19	15.5	17.5	18.5	18.5	18.5	147	16.5	17.5	17.5	17.5	18.5	
20	16	17.5	19	19.5	19	148	16.5	16.5	17	17.5	17.5	
21	16.5	18.5	20	20	20	148.5	16.5	17	16.5	17	17	
22	15.5	18	19.5	19.5	19.5	149.5	15.5	16	16	16	15	
23	15	17.5	19	19	19	150	15	15.5	16	16	14.5	

Figure G.2: Plate 3 Location B – Before and After Weld Distortion

Figure G.3: Plate 3 Location C – Before and After Weld Distortion

Figure G.4: Plate 3 Location D – Before and After Weld Distortion

Figure G.5: Plate 3 Location E – Before and After Weld Distortion

Figure G.6: Plate 3 At Stiffener – Before and After Weld Distortion

Figure G.7: Plate 3 Location G – Before and After Weld Distortion

Figure G.8: Plate 3 Location H – Before and After Weld Distortion

Figure G.10: Plate 3 Location J – Before and After Weld Distortion

Figure G.11: Plate 3 Location K – Before and After Weld Distortion

Figure G.12: Plate 7 Location A – Before and After Weld Distortion

Figure G.13: Plate 7 Location B – Before and After Weld Distortion

Figure G.14: Plate 7 Location C – Before and After Weld Distortion

Figure G.16: Plate 7 Location E – Before and After Weld Distortion

Figure G.18: Plate 7 Location G – Before and After Weld Distortion

Figure G.19: Plate 7 Location H – Before and After Weld Distortion

Figure G.20: Plate 7 Location I – Before and After Weld Distortion

Figure G.21: Plate 7 Location J – Before and After Weld Distortion

Figure G.22: Plate 7 Location K – Before and After Weld Distortion

Figure G.24: Plate 8 Location B – Before and After Weld Distortion

Figure G.25: Plate 8 Location C – Before and After Weld Distortion

Figure G.26: Plate 8 Location D – Before and After Weld Distortion

Figure G.27: Plate 8 Location E – Before and After Weld Distortion

Figure G.28: Plate 8 At Stiffener – Before and After Weld Distortion

Figure G.29: Plate 8 Location G – Before and After Weld Distortion

Figure G.30: Plate 8 Location H – Before and After Weld Distortion

Figure G.31: Plate 8 Location I – Before and After Weld Distortion

Figure G.32: Plate 8 Location J – Before and After Weld Distortion

Figure G.33: Plate 8 Location K – Before and After Weld Distortion

Figure G.34: Plate 9 Location A – Before and After Weld Distortion

Figure G.35: Plate 9 Location B – Before and After Weld Distortion

Figure G.36: Plate 9 Location C – Before and After Weld Distortion

Figure G.37: Plate 9 Location D – Before and After Weld Distortion

Figure G.38: Plate 9 Location E – Before and After Weld Distortion

Figure G.39: Plate 9 At Stiffener – Before and After Weld Distortion

Figure G.40: Plate 9 Location G – Before and After Weld Distortion

Figure G.41: Plate 9 Location H – Before and After Weld Distortion

Figure G.42: Plate 9 Location I – Before and After Weld Distortion

Figure G.43: Plate 9 Location J – Before and After Weld Distortion

Figure G.44: Plate 9 Location K – Before and After Weld Distortion

APPENDIX H

NET IMPROVEMENT VERSUS BENCHMARK PLATE 7 (4' x 10' HSLA 80 BASE PLATES)

Net Improvement, mm										
				E	Benchmai	rk				
Α	В	С	D	E	F	G	н	I	J	К
-5	-5	-3.5	-4	-4	-1	2	3.5	3.5	4.5	4.5
-4	-3	-2	-4	-4	-1	1.5	3	4	3	2.5
-1	-1.5	-1	-3	-3	-0.5	0.5	2	2	1.5	0
1	1	1	-1.5	-3	-0.5	0	1.5	0.5	0	-0.5
5.5	4.5	4	0.5	-1	-1	-0.5	-0.5	-1.5	-2.5	-4
9.5	8.5	6.5	3	-0.5	-1	-1.5	-2.5	-4	-6.5	-7.5
13	11	9.5	5	1	-0.5	-2.5	-5	-7	-7.5	-10.5
14	12	11	5.5	0.5	-0.5	-3.5	-4.5	-8	-8	-10.5
12.5	10.5	10	6	0.5	-1	-3	-4.5	-6	-7.5	-9
7.5	7	6.5	3	0.5	-1.5	-2.5	-3	-4.5	-3.5	-6.5
2.5	1	1.5	0	-1	-0.5	-1.5	-1	-1	-1	-1.5
-3.5	-3	-1.5	-2.5	-3.5	-1	-1	0	0.5	0.5	1.5
-5.5	-4	-3	-2.5	-2.5	-1	-1.5	0.5	-0.5	1	1.5
-3.5	-3	-1.5	-1	-1.5	-2	-1.5	-1	-0.5	-1.5	-1
1.5	0.5	1.5	0.5	-0.5	-1.5	-2.5	-2	-2.5	-3.5	-5
5	9	4	2.5	-0.5	-1	-2	-3	-3.5	-4.5	-7
6	5.5	4	2	0.5	-1.5	-1.5	-3.5	-3.5	-5	-7.5
4.5	3.5	3.5	1	-0.5	-1.5	-2	-3.5	-3	-4.5	-5
3.5	1.5	1.5	0	-0.5	-2	-2	-2.5	-2.5	-4	-4.5
0.5	-0.5	-1.5	-1	-2	-2	-2	-1.5	-2	-3	-2
0.5	0	-1	-1.5	-0.5	-1.5	-2	-1	-1.5	-2	-1.5
-1.5	-1	-1	-2	-1	-2	-2	-1	-1.5	-0.5	0
-1.5	-1.5	-1	-1	-2	-2	-2	-1	-2	-1	0.5

Table H.1: Net Improvement, T-MCAW Plate 8 vs. FCAW Plate 7 (No Tension)

 Table H.2: Net Improvement, T-MCAW Plate 9 vs. FCAW Plate 7 (No Tension)

 Net Improvement mm

Net Improvement, mm											
				Bei	nchmark						
Α	В	С	D	Е	F	G	Н	I	J	К	
-0.5	-1.5	-2.5	-4.5	-2.5	-2.5	-2	-1.5	0.5	-2.5	-0.5	
0.5	-0.5	-1	-4	-2.5	-2.5	-1	-1	2	-1.5	-1	
2	-4	0.5	-4	-2.5	-2.5	-1	-1	1	-0.5	-1	
3.5	1.5	1	-2.5	-2.5	-2.5	-1	1.5	1	-1	-1	
6	3	2.5	-1	-1	-2.5	0	2	2	0	-0.5	
6	4	2.5	0	-1	-2.5	-1	1.5	2	-0.5	1	
5	3.5	2.5	-1	-1.5	-2.5	-1	2	3.5	3	4	
3.5	2	1	-2	-2	-2.5	0	4	4.5	5.5	7	
1.5	0	-0.5	-2.5	-2	-2.5	0	4	6.5	6.5	8.5	
-0.5	-1.5	-2	-3.5	-3.5	-3	0	4	6.5	8	9	
-1.5	-3	-3	-3	-3.5	-1.5	0	-1	6	6	7	
-2	-3	-2.5	-3	-3.5	-2	-0.5	3	3	3	4	
-1.5	-1	-1	-2	-2	-2.5	-0.5	1	0	-1	-0.5	
1	1.5	1	-0.5	-1.5	-1.5	-2	-1	-2	-5.5	-4.5	
3.5	2.5	2	0	-1	-2.5	-2.5	-2.5	-4.5	-7	-8.5	
3.5	8	2.5	1	-1.5	-1.5	-3	-2	-5	-7.5	-11	
2.5	2	1.5	0	-0.5	-1.5	-1	-2	-4	-7	-9	
0.5	0	0.5	-1	-1.5	-1.5	-1.5	-1.5	-3	-5	-6	
-0.5	-0.5	-0.5	-1.5	-1	-2	-2	-1	-1	-3	-4	
-1	-3	-3	-1.5	-1.5	-1	-1	-0.5	-1	-1	-1.5	
-1	-1.5	-1.5	-2.5	-1	-0.5	-1	0.5	-0.5	-0.5	0.5	
-2	-2	-2	-3	-1.5	-0.5	-1	0.5	0	1	0.5	
-1.5	-2.5	-2.5	-2.5	-2.5	-0.5	-1.5	0	1	1	1	

Figure H.1: Plate 3 vs. Plate 7 Location A – Net Improvement

Figure H.3: Plate 3 vs. Plate 7 Location C – Net Improvement

Figure H.4: Plate 3 vs. Plate 7 Location D – Net Improvement

Figure H.5: Plate 3 vs. Plate 7 Location E – Net Improvement

Figure H.7: Plate 3 vs. Plate 7 Location G - Net Improvement

Figure H.8: Plate 3 vs. Plate 7 Location H – Net Improvement

Figure H.9: Plate 3 vs. Plate 7 Location I – Net Improvement

Figure H.10: Plate 3 vs. Plate 7 Location J – Net Improvement

Figure H.11: Plate 3 vs. Plate 7 Location K - Net Improvement

Figure H.13: Plate 8 vs. Plate 7 Location B – Net Improvement

Figure H.14: Plate 8 vs. Plate 7 Location C – Net Improvement

Figure H.15: Plate 8 vs. Plate 7 Location D – Net Improvement

Figure H.16: Plate 8 vs. Plate 7 Location E – Net Improvement

Figure H.17: Plate 8 vs. Plate 7 At Stiffener – Net Improvement

Figure H.18: Plate 8 vs. Plate 7 Location G – Net Improvement

Figure H.19: Plate 8 vs. Plate 7 Location H - Net Improvement

Figure H.20: Plate 8 vs. Plate 7 Location I – Net Improvement

Figure H.21: Plate 8 vs. Plate 7 Location J – Net Improvement

Figure H.22: Plate 8 vs. Plate 7 Location K – Net Improvement

Figure H.23: Plate 9 vs. Plate 7 Location A – Net Improvement

Evaluation of Advanced Gas Metal Arc Welding and Distortion Mitigation Techniques for Thin Panel Steel and Aluminum Structures

Figure H.25: Plate 9 vs. Plate 7 Location C – Net Improvement

Figure H.26: Plate 9 vs. Plate 7 Location D – Net Improvement

Figure H.27: Plate 9 vs. Plate 7 Location E – Net Improvement

Figure H.28: Plate 9 vs. Plate 7 At Stiffener – Net Improvement

Figure H.29: Plate 9 vs. Plate 7 Location G - Net Improvement

Figure H.30: Plate 9 vs. Plate 7 Location H – Net Improvement

Figure H.31: Plate 9 vs. Plate 7 Location I – Net Improvement

Figure H.32: Plate 9 vs. Plate 7 Location J – Net Improvement

Figure H.33: Plate 9 vs. Plate 7 Location K – Net Improvement

APPENDIX I

CHANGE IN DISPLACEMENTS AFTER WELDING (4' x 10' HSLA 80 BASE PLATES)

Figure I.1: Plate 3 Location A – Change in Displacement After Welding

Figure I.3: Plate 3 Location C – Change in Displacement After Welding

Figure I.4: Plate 3 Location D – Change in Displacement After Welding

Figure I.5: Plate 3 Location E – Change in Displacement After Welding

Figure I.6: Plate 3 At Stiffener – Change in Displacement After Welding

Figure I.7: Plate 3 Location G – Change in Displacement After Welding

Figure I.8: Plate 3 Location H – Change in Displacement After Welding

Figure I.9: Plate 3 Location I – Change in Displacement After Welding

Figure I.10: Plate 3 Location J – Change in Displacement After Welding

Figure I.11: Plate 3 Location K – Change in Displacement After Welding

Figure I.12: Plate 7 Location A – Change in Displacement After Welding

Figure I.13: Plate 7 Location B – Change in Displacement After Welding

Figure I.14: Plate 7 Location C – Change in Displacement After Welding

Figure I.15: Plate 7 Location D – Change in Displacement After Welding

Figure I.16: Plate 7 Location E – Change in Displacement After Welding

Figure I.17: Plate 7 At Stiffener – Change in Displacement After Welding

Figure I.18: Plate 7 Location G – Change in Displacement After Welding

Figure I.19: Plate 7 Location H – Change in Displacement After Welding

Figure I.20: Plate 7 Location I – Change in Displacement After Welding

Figure I.21: Plate 7 Location J – Change in Displacement After Welding

Figure I.22: Plate 7 Location K – Change in Displacement After Welding

Figure I.23: Plate 8 Location A – Change in Displacement After Welding

Evaluation of Advanced Gas Metal Arc Welding and Distortion Mitigation Techniques for Thin Panel Steel and Aluminum Structures

Figure I.25: Plate 8 Location C – Change in Displacement After Welding

Figure I.26: Plate 8 Location D – Change in Displacement After Welding

Figure I.27: Plate 8 Location E – Change in Displacement After Welding

Figure I.28: Plate 8 At Stiffener – Change in Displacement After Welding

Figure I.29: Plate 8 Location G – Change in Displacement After Welding

Figure I.30: Plate 8 Location H – Change in Displacement After Welding

Figure I.31: Plate 8 Location I – Change in Displacement After Welding

Figure I.32: Plate 8 Location J – Change in Displacement After Welding

Figure I.33: Plate 8 Location K – Change in Displacement After Welding

Figure I.34: Plate 9 Location A – Change in Displacement After Welding

Figure I.35: Plate 9 Location B – Change in Displacement After Welding

Figure I.36: Plate 9 Location C – Change in Displacement After Welding

Figure I.37: Plate 9 Location D – Change in Displacement After Welding

Figure I.38: Plate 9 Location E – Change in Displacement After Welding

Figure I.39: Plate 9 At Stiffener – Change in Displacement After Welding

Figure I.40: Plate 9 Location G – Change in Displacement After Welding

Figure I.41: Plate 9 Location H – Change in Displacement After Welding

Figure I.42: Plate 9 Location I – Change in Displacement After Welding

Figure I.43: Plate 9 Location J – Change in Displacement After Welding

Figure I.44: Plate 9 Location K – Change in Displacement After Welding

APPENDIX J

NET DISPLACEMENTS FOR FCAW and T-MCAW (4' x 10' HSLA 80 BASE PLATES) WITH CALCULATED AVERAGE DISPLACEMENT

Figure J.1: Plate 3 Location A – Relative Displacement

Figure J.2: Plate 3 Location B – Relative Displacement

Distance from Edge, mm

Figure J.4: Plate 3 Location D – Relative Displacement

Figure J.6: Plate 3 At Stiffener – Relative Displacement

Distance from Edge, mm

Figure J.8: Plate 3 Location H – Relative Displacement

Distance from Edge, mm

Figure J.10: Plate 3 Location J – Relative Displacement

Figure J.12: Plate 7 Location A – Relative Displacement

Distance from Edge, mm

Figure J.14: Plate 7 Location C – Relative Displacement

Distance from Edge, mm

Figure J.16: Plate 7 Location E – Relative Displacement

Figure J.17: Plate 7 At Stiffener – Relative Displacement

Figure J.18: Plate 7 Location G – Relative Displacement

Distance from Edge, mm

Figure J.20: Plate 7 Location I – Relative Displacement

Distance from Edge, mm

Figure J.22: Plate 7 Location K – Relative Displacement

Distance from Edge, mm

Figure J.24: Plate 8 Location B – Relative Displacement

Distance from Edge, mm

Figure J.26: Plate 8 Location D – Relative Displacement

Figure J.28: Plate 8 At Stiffener – Relative Displacement

Distance from Edge, mm

Figure J.30: Plate 8 Location H – Relative Displacement

Figure J.32: Plate 8 Location J – Relative Displacement

Figure J.34: Plate 9 Location A – Relative Displacement

Distance from Edge, mm

Figure J.36: Plate 9 Location C – Relative Displacement

Distance from Edge, mm

Figure J.38: Plate 9 Location E – Relative Displacement

Figure J.40: Plate 9 Location G – Relative Displacement

Distance from Edge, mm

Figure J.42: Plate 9 Location I – Relative Displacement

Distance from Edge, mm

Figure J.44: Plate 9 Location K – Relative Displacement

APPENDIX K

DEVIATION FROM AVERAGE RELATIVE DISPLACEMENT FOR FCAW and T-MCAW (4' x 10' HSLA 80 BASE PLATES)

Figure K.1: Plate 3 Location A – Deviation From Average Relative Displacement

Figure K.2: Plate 3 Location B – Deviation From Average Relative Displacement

Figure K.3: Plate 3 Location C – Deviation From Average Relative Displacement

Figure K.4: Plate 3 Location D – Deviation From Average Relative Displacement

Figure K.5: Plate 3 Location E – Deviation From Average Relative Displacement

Figure K.6: Plate 3 At Stiffener – Deviation From Average Relative Displacement

Figure K.7: Plate 3 Location G – Deviation From Average Relative Displacement

Figure K.8: Plate 3 Location H – Deviation From Average Relative Displacement

Figure K.9: Plate 3 Location I – Deviation From Average Relative Displacement

Figure K.10: Plate 3 Location J – Deviation From Average Relative Displacement

Figure K.11: Plate 3 Location K – Deviation From Average Relative Displacement

Figure K.12: Plate 7 Location A – Deviation From Average Relative Displacement

Figure K.13: Plate 7 Location B – Deviation From Average Relative Displacement B

Figure K.14: Plate 7 Location C – Deviation From Average Relative Displacement

Figure K.15: Plate 7 Location D – Deviation From Average Relative Displacement

Figure K.16: Plate 7 Location E – Deviation From Average Relative Displacement

Figure K.17: Plate 7 At Stiffener – Deviation From Average Relative Displacement

Figure K.18: Plate 7 Location G – Deviation From Average Relative Displacement

Figure K.19: Plate 7 Location H – Deviation From Average Relative Displacement

Figure K.20: Plate 7 Location I – Deviation From Average Relative Displacement

Figure K.21: Plate 7 Location J – Deviation From Average Relative Displacement

Figure K.22: Plate 7 Location K – Deviation From Average Relative Displacement

Figure K.23: Plate 8 Location A – Deviation From Average Relative Displacement

Figure K.25: Plate 8 Location C – Deviation From Average Relative Displacement

Figure K.26: Plate 8 Location D – Deviation From Average Relative Displacement

Figure K.27: Plate 8 Location E – Deviation From Average Relative Displacement

Figure K.28: Plate 8 At Stiffener – Deviation From Average Relative Displacement

Figure K.29: Plate 8 Location G – Deviation From Average Relative Displacement

Figure K.30: Plate 8 Location H – Deviation From Average Relative Displacement

Figure K.31: Plate 8 Location I – Deviation From Average Relative Displacement

Figure K.32: Plate 8 Location J – Deviation From Average Relative Displacement

Figure K.33: Plate 8 Location K – Deviation From Average Relative Displacement

Figure K.34: Plate 9 Location A – Deviation From Average Relative Displacement

Figure K.35: Plate 9 Location B – Deviation From Average Relative Displacement

Figure K.36: Plate 9 Location C – Deviation From Average Relative Displacement

Figure K.37: Plate 9 Location D – Deviation From Average Relative Displacement

Figure K.38: Plate 9 Location E – Deviation From Average Relative Displacement

Figure K.39: Plate 9 At Stiffener – Deviation From Average Relative Displacement

Figure K.40: Plate 9 Location G – Deviation From Average Relative Displacement

Figure K.41: Plate 9 Location H – Deviation From Average Relative Displacement

Figure K.42: Plate 9 Location I – Deviation From Average Relative Displacement

Figure K.43: Plate 9 Location J – Deviation From Average Relative Displacement

Figure K.44: Plate 9 Location K – Deviation From Average Relative Displacement

APPENDIX L

Figure L.1: Plate 3 Start 1

Figure L.2: Plate 3 Start 2

Figure 1.3: Plate 3 Center 1

Figure L.4: Plate 3 Center 2

Figure L.5: Plate 3 End 1

Figure L.6: Plate 3 End 2

Evaluation of Advanced Gas Metal Arc Welding and Distortion Mitigation Techniques for Thin Panel Steel and Aluminum Structures

APPENDIX M

Figure M.1: Plate 7 Start 1

Figure M.2: Plate 7 Start 2

Figure M.3: Plate 7 Center 1

Figure M.4: Plate 7 Center 2

Figure M.5: Plate 7 End 1

Figure M.6: Plate 7 End 2

APPENDIX N

Figure N.1: Plate 8 Start 1

Figure N.2: Plate 8 Start 2

Figure N.3: Plate 8 Center 1

Figure N.4: Plate 8 Center 2

Figure N.5: Plate 8 End 1

Figure N.6: Plate 8 End 2

APPENDIX O

Figure O.1: Plate 9 Start 1

Figure O.2: Plate 9 Start 2

Figure O.3: Plate 9 Center 1

Figure O.4: Plate 9 Center 2

Figure O.5: Plate 9 End 1

Figure O.6: Plate 9 End 2

BMT Group is an international design, engineering and risk management consultancy, working principally in the maritime transport, ports and logistics, marine risk and insurance, energy and environment and defence sectors. BMT invests significantly in research. Its customers are served through a network of international subsidiary companies. The assets are held in beneficial ownership for its staff.

BMT Fleet Technology Limited is an innovative leader in providing through-life engineering support from concept development through design, operational and maintenance management. Operating across a range of industries, we are committed to retaining and applying practical knowledge of sector-specific factors in developing responsive solutions to customers' needs.

BMT Fleet Technology Ltd Head Office

311 Legget Drive Kanata, Ontario, Canada K2K 1Z8 Tel: 613-592-2830

St. John's 25 Kenmount Road St. John's, Newfoundland, Canada A1B 1W1 Tel: 709-753-5690

Vancouver

611 Alexander Street, Suite 412 Vancouver, British Columbia, Canada V6A 1E1 Tel: 604-253-0955

Victoria

Shoal Point, 101-19 Dallas Road Victoria, BC, Canada V8V 5A6 Tel: 250-598-5150

Web: www.fleetech.com or through any of our sister BMT companies with over 50 offices worldwide to serve you.

Certified to ISO 9001:2000, we are dedicated to ongoing quality and management systems.