Develop and Implement 'World Class' U.S. Material Standards and Parametric Design Rules to Support Commercial and Naval Auxiliary Ship Construction

Project Final Status Report

by

National Steel & Shipbuilding Co.

on

June 16th 2004

Maritech ASE Project #99-21 Technology Investment Agreement (TIA) 20000215

Category B Data- Government Purpose Rights

Approved for Public Release; Distribution is Unlimited

Material Standards & Parametric Design Rules

Team Members

NASSCO (lead), Halter, Electric Boat, Bath Iron Works, Ingalls, Newport News Shipyard, M. Rosenblatt & Son, Designers and Planners, Proteus, Vibtech, Munro & Associates., First Marine International, SPAR, Integration Partners, ABS, Hopeman Bros., Simsmart, University of Washington, University of Michigan, Webb Institute.

Major Accomplishments

- Developed Functional Volume Design Approach and Training Software
- Enhanced Proteus IDNA Software
- Developed CID Architecture
- Developed Standards Library
- Developed Design Rules and Templates
- Applied Lean Design to Shipbuilding
- Training Materials Published
- Workshops conducted

Strategic Vision

Material Standards & Parametric Design Rules

An integrated pre-production process based on comprehensive standardization across the principal functional areas of Engineering, Estimating, Materials, and Planning.

This process applies standardization to material, equipment, design, material selection, cost estimating, interim products, arrangements, zone designs and whole-ship designs

Expected Benefits

- Five-fold increase in the throughput of preliminary designs and cost estimates that a shipyard can produce in response to market inquiries
- <u>33% reduction</u> in cost and cycle time for pre-production processes during the contract, transition, and detail design phases.

Expected Benefits

Material Standards & Parametric Design Rules

European USA 0 10 20 30 40 Months

Typical Suezmax Tanker Schedule USA & Europe

Added value

Material and equipment

Reduce Material Cost and Cycle Time

Typical Design and Engineering Cycle Time in the USA

Functional Volume Design

Material Standards & Parametric Design Rules

Problems with the Existing Design Process Creates "custom" design solutions that are:

- Intrinsically of "lower technical confidence" and "higher commercial risk".
- At a price that is well above the expectations of the international market.
- At a cost that makes the shipyard uncompetitive.
- With excessive design cost and lead time.

Standard v Custom Design

Material Standards & Parametric Design Rules

Task 1 - Methodology Templates & Guides

- Project Methodology template, revised
 - » Provided a detailed project plan
- Lean Methodology Guide
 - » Conducted two industry workshops
 - » Provided hands-on experience in applying DFMA principles
- Software Methodology Guide
 - » Provided guidance for software development (any project)
- Education and Tech Transfer Guide
 - » Provided guidance and sets expectations

Material Standards & Parametric Design Rules

Task 2 - Common Item Database (CID)

- Develop and Populate CID with Spec & Non-Spec Material/Equipment
 - » Defined commercial shipyard data requirements
 - » Defined business process & procedures
 - » Defined organizational requirements
 - » Defined part equivalency process & procedures
 - » Defined CID architecture
 - » Populated CID with over 650 products from more than 730 suppliers (over 740 product types in 45 product categories)
 - » Product catalog development Identified over 200 Data templates at the functional volume level with over 400 associated product templates

CID and the Design Process

CID and the Design Process

CID Architecture

Product Data Templates

Material Standards & Parametric Design Rules

Data Sheets

Material Standards & Parametric Design Rules

• Task 3 - Develop a Set of Nationally Acceptable Material & Design Standards (outfit & structure)

- 960 steel and outfit standards delivered
- Over 1200 standards submitted to project team for review

Delivered Standards

- 252 Structural Standards
- 708 Outfitting Standards
 - » 95 Electrical Standards
 - » 134 Metal Outfit Standards
 - » 391 Piping Standards
 - » 88 HVAC Standards

Types of Standards

- Parts Standards
- Interim Product Standards
 - Groups of parts or assemblies

Material Standards & Parametric Design Rules

W/T DOOR

Ŭ,								
		-	3-a	-				
9700-5	8/18/ (TP	/ #	AFCAN	L				
(SHORM) IR UP TO 40	STA	IOVAD RAL ASS/S						
ve up rale	UP RALE INSTALLATION RAL ASSOCIATE AND							
			ASSESSO	ASSESSO				
HOURAL BOX FT-HOAN)	ADVENUT V/WO SEAPLED	ABSTRACT V/ STATUES LEFT BIDE	STOPLES MINHT RISE	STAFLES BOTH RDC7	MONT			
5-00 (1585)	67-70801	8770504L	87-708018	67-70501 UR	RD			
10-00 (3060)	87-78592	87-70898.	87-708025	37-7080208	54			
15-00 (4575)	F7-70333	87-70833	17-70503R	47-75803UR	118			
20-39 (0109)	87-70604	87-70604L	87-70504Pi	67-79504IR	15			
5-00 (1595)	87-70401P	87-70401PL	47-79501PR	9770601PL8	P			
10-00 (3050)	87-70502*	87-705081	47-70002FB	87-70802FLR	54			
15-00 (4575)	87-70503P	87-70503PL	47-700399	87-70003PL8	115			
20-00 (0100)	87-70504P	87-7050HPL	87-7060498	87-70604PLR	15			
9. 0 3, P 4. U 8, 0	IL Dimensiones ap Gerall Standhord Roade 3 Inches De Sto Dag 77-4 Eitertenni, tales Roade Page Mile Roade Page Mile	s atta a linodal Gleannac Betta G'-gied for Alex Nakize Will Hot Te Mail on Prest Di Reguired By B	een top handan ese openings th exceed 1/8 m eothon side op 1	l and any other nu kanganalal 4 rest of lenga				
7. P	WHT DODE: HIPPE							
7. P		DETIMAL (NO)						

Material Standards & Parametric Design Rules

After

Before

Light Standoff Reduction of Parts/Work Content & Increased Functionality

Material Standards & Parametric Design Rules

Cargo Door Improvements

- Modular door & frame fully assembled and tested
- Lap joint to bulkhead
- Single lip seal
- Integrated control box
- Latching hydraulic cylinders
- Accumulator instead of hand pump

Parts Reduction Operations Reduction

> 40% > 40%

- Task 4 Develop Technical Approach for Early-Stage and Parametric Ship Design Tools
 - Identified and evaluated existing tools
 - Developed Proteus/Spar Flagship software suite
 - » Released Smart Product Model (SPM) Advanced Parametric Ship Design, Cost Estimating, and Production Planning software
 - » Integrated the Herbert stability & hydrostatics toolset
 - » Industry workshops conducted to demonstrate the parametric "Smart Product Model" (SPM)
 - » Paper and demonstration presented at SPS Ypsilanti (2001)

Initial Design Tools

Material Standards & Parametric Design Rules

- GCRMTC / MR&S Design Synthesis Model
 - Defines principle characteristics based on owner requirements
- Proteus / Spar Flagship suite
 - Smart Product Model (SPM) Advanced Parametric Ship Design, Cost Estimating, and Production Planning
- SPM infrastructure

Software Product

- FastShip
- GHS/SDS
- NavCad
- MAESTRO
- ESTI-MATE
- PERCEPTION

Functional Area Hullform Design Hydrostatics and Stability Resistance and Powering Structural Modeling / Design Cost Estimating Production Planning

Smart Product Model (SPM)

Material Standards & Parametric Design Rules

Parameters include top level owner's requirements, classification and limiting dimensions, naval architecture design parameters, ship characteristics, cost and labor analyses.

Smart Product Model (SPM)

Material Standards & Parametric Design Rules

The SPM is linked to stand-alone tools for detailed design and analysis

Cost ESTI-MATE Model

Design Process Development

Material Standards & Parametric Design Rules

NSRP ASE

Material Standards & Parametric Design Rules

Task 5 - Develop Metrics and Rules for 'Whole-Ship' Design

- Developed metrics that characterize design and cost estimating processes for three generic ship types that are representative of the product mix for a medium-size US shipyard
 - » Container ship
 - » Product/Crude Tanker
 - » RO/RO Trailer Ship
- Rules catalog development, over 500 rules captured

Design Rule Hierarchy

Material Standards & Parametric Design Rules

Design Rules Functional Volume Design

Material Standards & Parametric Design Rules

Task 6 - Develop Zone Design Rules & Material Templates

- Generic Interim Products Defined
- Developed Design & Material Templates and Rules for each Ship Zone (Structure, Cargo, Machinery, Accommodations.)
- Defined Functional Volume Design method and processes
 - » Integrated design and cost estimating process
 - » Conducted training on methodology at Industry workshops
 - » Two technical papers presented at SNAME Ship Production Symposium

Functional Volume Design

Material Standards & Parametric Design Rules

Design Process Application

Existing Design and Estimating Process

Material Standards & Parametric Design Rules

Words and Pictures are converted to SCOPE and Dollars

Capacity Plan & Stowage Arrgt.

Bid Level Estimate

Existing Design and Estimating Process

- Scope defined late
 - Therefore Estimating defines notional scope
- Many aspects of "design definition" are really "rework"
 - Rework is associated with information quality
 - Improving information quality reduces rework and shortens design cycle

Functional Volume Design

Material Standards & Parametric Design Rules

Integrates pre-contract activity to communicate SCOPE by using templates

- Design visibility and responsibility for SCOPE
- Estimating responsibility for rates and CER's

Together they drive out cost and eliminate re-work

- Risk is minimized technical, cost, & schedule
- Schedule is reduced

Ship Type Selection

Material Standards & Parametric Design Rules

• Task 7 - Validation Effort

Baseline Design selected as NNS Double Eagle Class Tanker

- Contract design package submitted
- Produced a video and a electronic photo file of the vessel

A COMPLETE SHIP DESIGN WAS NOT VALIDATED

Material Standards & Parametric Design Rules

• Task 8 - Technology Transfer & Education

Module 1 Background/Need for Project

Module 1.1Current State of Art/Lean PrinciplesModule 1.2.1Ship Design ToolsetModule 1.2.2Information Systems

Module 2 Material & Equipment Standards

Module 2.1.1 Use of Standards Module 2.1.2 Data Base Mgt – CID Part Equivalency Module 2.1.3 Data Base Mgt – CID Audit Process Module 2.1.4 Data Base Mgt – Data Element Dictionary Module 2.1.5 ABS/USCG Approvals Module 2.2.1 Specification Equipment Standards Module 2.2.2 CID Spec. Equipment Standards Module 2.2.3 CID Non-Spec. Equipment Standards

Material Standards & Parametric Design Rules

Task 8 - Technology Transfer & Education

- Module 3 Parametric Design Rules & System Tools
 - Module 3.0 Improved Pre-Production Processes
 - Module 3.1 Introduction to Design Process
 - Module 3.2 Parametric Ship Design Tool
 - Module 3.6 Design & Material Templates
 - Module 3.7 Interim Products
 - Module 3.11 Accommodations & Deckhouse

AccomDesign Software

Module A1Software Operating InstructionsModule A2Software Use Example

Material Standards & Parametric Design Rules

• Task 9 - Prepare Project Reports & Deliverables

- 37 workshops and presentations conducted at Ship Production Symposia, NSRP Panel meetings, Project participant status reports and SNAME meetings at the national level.
- 8 Journal papers written
- Posted over 50 project deliverables on project web sites

» <u>nsrp.org</u>

» usashipbuilding.com

- University classes and independent study work has been presented at U of Michigan & U of Washington
- One Master's Thesis at the University of Washington
- Developed ACCOM Design training software
- Completed 12 Education and Training Modules

Potential Further Developments

- Verify Functional Volume Design Approach Through Full Implementation
 - A Methodology template has already been delivered

Continue Rules and Templates Development

- Further Develop Macro Standards for Integrated Products Across the Whole Ship
- Demonstrate Applicability to Naval Ship Design
- Leverage On-going Developments with E Commerce and Common Parts Catalog Use
- Application of Expert Systems to Design Process