Virtual Reality Welder Training

Project No. S1051
Navy ManTech Program

Presenters:
Allan Cote, Electric Boat
Tim Gifford, VRSim
Nancy Porter, EWI

Project Review for ShipTech 2005
March 1, 2005
Biloxi, MS
We had an Idea

Head -> Torch = 12.6 in
WA = 36.5 TA = 70.0
CTW = 0.51 AE = -0.23
TS = 18.4
Objective

Demonstrate the Concept of Virtual Reality Technology for Welder Training
Team Members

Navy Joining Center

POC: Nancy Porter
Phone: 614-688-5194
nancy_porter@ewi.org

Technical Advisor

POC: John Carney
Phone: 703-696-0352
Carneyj@onr.navy.mil

VRSim

POC: Tim Gifford
Phone: 860-893-0080
Tim.Gifford@VRSim.net
Yvette Dudac
Phone: 860-893-0080
Yvette.Dudac@VRSim.net

EWI

POC: Chris Conrardy
Phone: 614-688-5191
chris_conrardy@ewi.org
Jim Reynolds
Phone: 614-688-5263
jim_reynolds@ewi.org
Bob Yancey
Phone: 614-688-5116
bob_yancey@ewi.org

Electric Boat

POC: Allan Cote
Phone: 860-433-2011
acote@ebmail.gdeb.com
Ken Peters
Phone: 860-433-3234
kpeters@ebmail.gdeb.com
Ken Fast
Phone: 860-433-6432
kfast@ebmail.gdeb.com
Welding in Shipbuilding Industry

- Most major connections on ships are welded, such as pressure hull butts and frames, bulkheads, tanks, foundations, decks, piping systems and machinery items
 - Hours of welding in average submarine hull - 1 Million to 1.3 Million hours (25% manual)

- Types of Welding used
 - Gas Metal Arc Welding (GMAW, MIG, Spray, Pulse & Short Arc)
 - Shielded Metal Arc Welding (SMAW) - Stick Electrode
 - Submerged Arc Welding (SAW)
 - Gas Tungsten Arc Welding (GTAW, TIG)

- Annually EB accounts for 35,000 hours of welder training. With a cost of more than $600K
 - Industry wide estimated cost -- $5 Million per year
 - Estimated all industries expenditures for welding training -- $18 Million per year
 - Shipbuilding / Navy use of Virtual Welding Trainer indicates a potential savings of $2.5 Million per year.
Increase Training Effectiveness
Decrease Labor and Material Cost

Leverage New Technologies to Enhance Traditional Learning

• A virtual welding trainer would be used to build the skills of new welders and enhance the skills of existing welders in order to increase the quality of welded structures in shipbuilding.

• Our vision for a virtual welding trainer is that it replicates the physical characteristics / environment of welding, such as:
 – Striking an arc, drag, arc feedback
 – Executing the proper motion, pacing - speed of travel
 – Impact of arc physics on horizontal welds
 – The sounds associated with changes in tip-to-work distance
 – The look of fusion / sparking
Increase Training Effectiveness
Decrease Labor and Material Cost

Using Simulations Integrated With Virtual Toolkits Provides a Robust Way To Learn

- 100% feedback for learner/welder
- Guided simulations (ghosting)
- No environmental impact
- Clean and Safe
- Only the final qualification plate for each welding process would be physically welded. Even this concept may be challenged.
Benefits

• A 2% increase in GMAW productivity alone will result in a $325k savings per submarine hull.

• More highly skilled welders produce higher quality welds which contain fewer workmanship defects, thus reducing weld repair costs.

• Applications: VIRGINIA class submarine production, Seawolf, Ohio and Los Angeles class repairs; surface ships

• Rough Order of Magnitude ROI ≅ 4:1
Virtual Welding Trainer
Forms a Foundation for Follow-on Efforts

Initial Program Scope

Virtual Welding Trainer For GMAW
50% savings achieved by providing 100% feedback to trainees & reducing and targeting instructor contact time

Longer Term Vision
Benefits gained from leveraging plans, methods and lessons learned to virtual simulations of other manufacturing processes

Database

Feedback Elements
Visual, haptic, auditory prompts and guides assist user through modules and identify errors and corrective measures. Different applications applied to follow-on efforts

Other Welding Types
SMAW - GTAW - TIG

Other Capitalization

Equipment Operations

Decision Making

Technical Maintenance

System Maintenance

Shipping, Cladding, Pipe Cutting, Pipe Welding, Crane Operations
How was Welding Simulated?

- Design of Experiment (DOE) with Weld Samples using Electric Boat parameters
- Trained Neural Nets
- Queried Neural Nets in real time to determined weld pool behavior and weld cross sectional area.
Welding Parameters

- Welding Angle: 35-55°
- Tip Angle: 70-110°
- Tip-to-Work: 0.6-0.8"
- Travel Speed: 10-20 ipm
- Current: 206-291 Amps
- Voltage: 26-28 Volts
Welded Samples

<table>
<thead>
<tr>
<th>No.</th>
<th>WA (deg)</th>
<th>TA (deg)</th>
<th>CTWD (Inch)</th>
<th>TS (ipm)</th>
<th>I (A)</th>
<th>V (V)</th>
<th>WFS (ipm)</th>
<th>Arc Power (w)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>35</td>
<td>110</td>
<td>0.6</td>
<td>10</td>
<td>226.3</td>
<td>26.69</td>
<td>285.54</td>
<td>6041.83</td>
</tr>
<tr>
<td>2</td>
<td>55</td>
<td>70</td>
<td>0.6</td>
<td>10</td>
<td>227.6</td>
<td>27.01</td>
<td>283.46</td>
<td>6150.74</td>
</tr>
<tr>
<td>3</td>
<td>55</td>
<td>110</td>
<td>0.8</td>
<td>10</td>
<td>213.0</td>
<td>26.99</td>
<td>285.07</td>
<td>5750.42</td>
</tr>
<tr>
<td>4</td>
<td>35</td>
<td>70</td>
<td>0.8</td>
<td>10</td>
<td>230.5</td>
<td>26.97</td>
<td>286.27</td>
<td>6216.85</td>
</tr>
<tr>
<td>5</td>
<td>55</td>
<td>110</td>
<td>0.6</td>
<td>20</td>
<td>221.1</td>
<td>27.02</td>
<td>285.64</td>
<td>5975.01</td>
</tr>
<tr>
<td>6</td>
<td>35</td>
<td>70</td>
<td>0.6</td>
<td>20</td>
<td>260.1</td>
<td>27.05</td>
<td>285.87</td>
<td>7035.77</td>
</tr>
</tbody>
</table>

EWI generated 43 parameter sets to populate matrix
Simulator System Functionality

- Head/torch position determined with a tracker
- Torch position/orientation determined by a haptic control device
- Torch trigger generates the virtual weld bead
- Torch position/orientation is output to the Neural Net which returns weld bead shape
- Stand Alone Computers run Simultaneous Force, Welding Simulation, and Visualization Simulations
Simulation Scenario

Welder Training Booth

Weld Typical of Training
System Reportage During Weld
System Reportage After Weld

Head -> Torch = 26.0 in
WeldAngle = 37.2
TravelAngle = 34.4
CupToWorkDistance = 6.06
AmError = -0.07
TravelSpeed = 18.4
Voltage = 27.33
WireFeed = 300
Evaluation Trials @ EB

- 100+ People Tested System over 3 weeks at Quonset Point Welding School
 - Seasoned Welders 20+ Years Experience
 - People with 0 Experience
- The majority of users liked the experience and recommended future development of the system.
Year 2 Technology Plan

- Improve Graphics of Weld Pool and Sound as Torch Orientation Changes in 3-D Space.
- Add Real-Time Audio/Visual Feedback to Help Welder Correct Torch Orientation or Travel Speed Errors During Simulation.
- Develop implementation plan for use in GDEB Welder Training Program
Current Status

• EWI used FLUENT software to develop an advanced GMAW weld pool model for year 2 enhancements. Turned over to VR SIM for use.

• EWI Drafted Curriculum for VR GMAW training at GDEB
 • GDEB Reviewing & Modifying

• VRSim Integrating SGI Components and Creating Mocked-Up Welding Equipment for System
Electric Boat Point of Contact

Allan Cote
860-433-2011
The Navy Joining Center

Over a Decade - Serving Navy Needs

Operated by EWI

THE MATERIALS JOINING EXPERTS